Skip to main content

Genetic Potential and Gene Expression Landscape in Flax

  • Chapter
  • First Online:
Genetics and Genomics of Linum

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 23))

Abstract

Flax is an important domesticated crop that is farmed for the production of linen textiles and for its oil seeds that contain many important human health-promoting compounds. Flax is one of the earliest domesticated crops, yet progress in genetic, genomic, and transcriptomic analysis of important agricultural traits has been relatively slow. Major gene expression studies have examined bast fiber development, seed development, and stress responses. These studies have identified some key genes involved in oil production and highlight some unique aspects of the cell wall of bast fibers which is of great interest to linen producers and cell wall biologists. Following the recently published genome sequence, flax is currently poised for further amelioration of economically important traits through directed breeding approaches and molecular genetics. Here, we review some of the major transcriptomics studies on flax development, highlight the major discoveries, and provide some perspective on further development of this crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allaby RG, Peterson GW, Merriwether DA, Fu YB (2005) Evidence of the domestication history of flax (Linum usitatissimum L.) from genetic diversity of the sad2 locus. Theor Appl Genet 112:58–65

    Article  CAS  PubMed  Google Scholar 

  • Barvkar VT, Pardeshi VC, Kale SM, Qui S, Rollins M, Datla R, Gupta VS, Kadoo NY (2013) Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum usitatissimum): characterization of flax miRNA genes. Planta 237:1149–1161

    Article  CAS  PubMed  Google Scholar 

  • Bruhl L, Matthaus B, Fehling E, Wiege B, Lehmann B, Luftmann H, Bergander K, Quiroga K, Scheipers A, Frank O, Hofmann T (2007) Identification of bitter off-taste compondes in the stored cold pressed linseed oil. J Agric Food Chem 55:7864–7868

    Article  PubMed  Google Scholar 

  • Chantreau M, Grec S, Gutierrez L, Dalmais M, Pineau C, Demailly H, Paysant-Leroux C, Tavernier R, Trouve JP, Chatterjee M, Guillot X, Brunaud V, Chabbert B, van Wuytwinkel O, Bendahmane A, Thomasset B, Hawkins S (2013) PT-Flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimum L.) mutant population and TILLinG platform for forward and reverse genetics. BMC Plant Biol 13:159

    Article  PubMed  PubMed Central  Google Scholar 

  • Chantreau M, Chabbert B, Billiard S, Hawkins S, Neutelings G (2015) Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus-induced gene silencing. Plant Biotechnol J 13:1312–1324

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Schneeberger RG, Cullis CA (2005) A site-specific insertion sequence in flax genotrophs induced by environment. New Phytol 167:171–180

    Article  CAS  PubMed  Google Scholar 

  • Cloutier S, Niu Z, Datla R, Duguid S (2009) Development and analysis of EST-SSRs for flax (Linum usitatissimum L.). Theor Appl Genet 119:53–63

    Article  CAS  PubMed  Google Scholar 

  • Cloutier S, Miranda E, Ward K, Radovanovic N, Reimer E, Walichnowski A, Datla R, Rowland G, Duquid S, Ragupathy R (2012a) Simple sequence repeat marker development from bacterial artificial chromosome end sequences and expressed sequence tags of flax (Linum usitatissimum L.). Theor Appl Genet 125:685–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloutier S, Ragupathy R, Miranda E, Radovanvic N, Reimer E, Walichnowski A, Ward K, Rowland G, Duguid S, Banik M (2012b) Integrated consensus genetic and physical maps of flax (Linum usitatissimum L.). Theor Appl Genet 125:1783. https://doi.org/10.1007/s00122-012-1953-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Cullis CA (1973) DNA differences between flax genotypes. Nature 243:515–516

    Article  CAS  PubMed  Google Scholar 

  • Cullis CA (1976) Environmentally induced changes in ribosomal RNA cistron number in flax. Heredity 36:73–80

    Article  Google Scholar 

  • Cullis CA (1981) DNA sequence organization in the flax genome. Biochim Biophys Acta 652:1–15

    Article  CAS  PubMed  Google Scholar 

  • Cullis CA (2005) Mechanisms and control of rapid genomic changes in flax. Ann Bot 95:201–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullis CA, Cleary W (1986) Rapidly varying DNA sequences in flax. Can J Genet Cytol 28:252–259

    Article  CAS  Google Scholar 

  • del Rio JC, Rencoret J, Gutierrez A, Nieto L, Jimenez-Barbero J, Martinez AT (2011) Structural characterization of guaiacyl-rich lignins in flax (Linum usitatissimum) fibers and shives. J Agric Food Chem 59:11088–11099

    Article  PubMed  Google Scholar 

  • Dabrowski KJ, Sosulski FW (1984) Composition of free and hydrolysable phenolic acids in defatted flours of ten oilseeds. J Am Oil Chem Soc 32:128–130

    CAS  Google Scholar 

  • Dash PK, Cao Y, Jailani AK, Gupta P, Venglat P, Xiang D, Rai R, Sharma R, Thirunavukkarasu N, Abdin MZ, Yadava DK, Singh NK, Singh J, Salvaraj G, Deyholos M, Kumar PA, Datla R (2014) Genome-wide analysis of drought induced gene expression changes in flax (Linum usitatissimum). GM Crops Food 5(2):106–119

    Article  PubMed  PubMed Central  Google Scholar 

  • Day A, Addi M, Kim W, David H, Bert F, Mesnage P, Rolando C, Chabbert B, Neutelings G, Hawkins S (2005a) ESTs from the fibre-bearing stem tissues of flax (Linum usitatissimum L.): expression analysis of sequences related to cell wall development. Plant Biol (Stuttg) 7:23–32

    Article  CAS  Google Scholar 

  • Day A, Ruel K, Neutelings G, Cronier D, David H, Hawkins S, Chabbert B (2005b) Lignification in the flax stem: evidence for an unusual lignin in bast fibers. Planta 222:234–245

    Article  CAS  PubMed  Google Scholar 

  • Dmitriev AA, Kudryavtseva AV, Krasnow GS, Koroban NV, Speranskaya AS, Krinitsina AA, Belenikin MS, Snezhkina AV, Sadritdinova AF, Kishlyan NV, Rozhmina TA, Yurkevich OY, Muravenko OV, Bolsheva NL, Melnikova NV (2016) Gene expression profiling of flax (Linum usitatissimum L.) under edaphic stress. BMC Plant Biol 16(Suppl 3):237. https://doi.org/10.1186/s12870-016-0927-9

    Article  CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2014) FAOSTAT database. Rome: FAO. Retrieved March 3, 2017 from: http://www.fao.org/faostat/en/#data/QC

  • Galindo-Gonzalez L, Deyholos MK (2016) RNA-seq transcriptome response of flax (Linum usitatissimum L.) to the pathogenic fungus Fusarium oxysporum f. sp. lini. Front Plant Sci 7:1766. eCollection 2016

    Article  PubMed  PubMed Central  Google Scholar 

  • Galindo-Gonzalez L, Pinzon-Latorre D, Bergen EA, Jensen DC, Deyholos MK (2015) Ion Torrent sequencing as a tool for mutation discovery in the flax (Linum usitatissimum L.) genome. Plant Methods 11:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaymes TJ, Cebrat M, Siemion IZ, Kay JE (1997) Cyclolinopeptide A (CLA) mediates its immunosuppressive activity through cyclophilin-dependent calcineurin inactivation. FEBS Lett 418:224–227

    Article  CAS  PubMed  Google Scholar 

  • Gorshkov O, Mokshina N, Gorshkov V, Chemikosova S, Gogolev Y, Gorshkova T (2016) Transcriptome portrait of cellulose-enriched flax fibers at advanced stage of specialization. Plant Mol Biol. https://doi.org/10.1007/s11103-016-0571-7

    Article  PubMed  Google Scholar 

  • Górski A, Kasprzycka M, Nowaczyk M, Wieczoreck Z, Siemion IZ, Szelejewski W, Kutner A (2001) Cyclolinopeptide: a novel immunosuppressive agent with potential anti-lipemic activity. Transplant Proc 33:553–553

    Article  PubMed  Google Scholar 

  • Gui B, Shim YY, Datla RS, Covello PS, Stone SL, Reaney MJ (2012) Identification and quantification of cyclolinopeptides in five flaxseed cultivars. J Agric Food Chem 60:8571–8579

    Article  CAS  PubMed  Google Scholar 

  • Haughn GW, Western TL (2012) Arabidopsis seed coat mucilage as a specialized cell wall that can be used as a model for genetic analysis of plant cell wall structure and function. Front Plant Sci 3:64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbig C, Maier U (2011) Flax for oil or fibre? Morphometric analysis of flax seeds and new aspects of flax cultivation in late Neolithic wetland settlements in southwest Germany. Veg Hist Archaeobotany 20:527–533

    Article  Google Scholar 

  • Johnson C, Moss T, Cullis C (2011) Environmentally induced heritable changes in flax. J Vis Exp. pii: 2332. https://doi.org/10.3791/2332

  • Kessler H, Klein M, Müller A, Bats JW, Ziegler K, Frimmer M (1986) Conformation prerequisites for the in vitro inhibition of cholate uptake in hepatocytes by cyclic analogs of antamanide and somatostatin. Angew Chem Int Ed Engl 25:997–999

    Article  Google Scholar 

  • Kristensen M, Jensen MG, Aarestrup J, Petersen KEN, Sondergaard L, Mikkelsen MS, Astrup A (2012) Flaxseed dietary fibers lowers cholesterol and increase fecal excretion, but magnitude of effect depend on food type. Nutr Metab (Lond) 9:8–16

    Article  CAS  Google Scholar 

  • Lao YW, Mackenzie K, Vincent W, Krokhin OV (2014) Characterization and complete separation of major cyclolinopeptides in flaxseed oil by reversed-phase chromatography. J Sep Sci 34:1788–1796

    Article  Google Scholar 

  • Mokshina N, Gorshkova T, Deyholos MK (2014) Chitinase-like (CTL) and cellulose synthase (CESA) gene expression in gelatinous-type cellulosic walls of flax (Linum usitatissimum L.) bast fibers. PLoS One 9:e97949

    Article  PubMed  PubMed Central  Google Scholar 

  • Neutelings G, Fenart S, Lucau-Danila A, Hawkins S (2012) Identification and characterization of miRNAs and their potential targets in flax. J Plant Physiol 169:1754–1766

    Article  CAS  PubMed  Google Scholar 

  • Rajwade AV, Kadoo NY, Borikar SP, Harsulkar AM, Ghorpade PB, Gupta VS (2014) Differential transcriptional activity of SAD, FAD2 and FAD3 desaturase genes in developing seeds of linseed contributes to varietal variation in the a-linolenic acid content. Phytochemistry 98:41–53

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Paynel F, Morvan C, Lerouge P, Driouich A, Ray B (2013) Characterization of mucilage polysaccharides, arabinogalactanproteins and cell-wall hemicellulosic polysaccharides isolated from flax seed meal: a wealth of structural moieties. Carbohydr Polym 93:651–660

    Article  CAS  PubMed  Google Scholar 

  • Roach MJ, Deyholos MK (2007) Microarray analysis of flax (Linum usitatissimunm L.) stems identified transcripts enriched in fibre-bearing phloem tissues. Mol Gen Genomics 278:149–165

    Article  CAS  Google Scholar 

  • Roach MJ, Deyholos MK (2008) Microarray analysis of developing flax hypocotyls identifies novel transcripts correlated with specific stages of phloem fibre differentiation. Ann Bot 102:317–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roach MJ, Mokshina NY, Badhan A, Snegireva AV, Hobson N, Deyholos MK, Gorshkova TA (2011) Development of cellulosic secondary walls in flax fibers requires beta-galactosidase. Plant Physiol 156:1351–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Leyva D, Dupasquier CM, McCullough R, Pierce GN (2010) The cardiovascular effects of flaxseed and its omega-3 fatty acid, alpha-linolenic acid. Can J Cardiol 26:489–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Saez-Aguayo S, Rondeau-Mouro C, Macquet A, Kronholm I, Ralet MC, Berger A, Salle C, Poulain D, Granier F, Botran L, Loudet O, de Meaux J, Marion-Poll A, North HM (2014) Local evolution of seed flotation in Arabidopsis. PLoS Genet 10:e1004221

    Article  PubMed  PubMed Central  Google Scholar 

  • Sauer NJ, Narvaez-Vasquez J, Mozoruk J, Miller RB, Warburg ZJ, Woodward MJ, Mihiret YA, Lincoln TA, Segami RE, Sanders SL, Walker KA, Beetham PR, Schopke CR, Gocal GFW (2016) Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol 170:1917–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneeberger RG, Cullis CA (1991) Specific DNA alterations associated with the environmental induction of heritable changes in flax. Genetics 128:619–630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Katavic V, Yu Y, Kunst L, Haughn G (2012) Arabidopsis glabra2 mutant seeds deficient in mucilage biosynthesis produce more oil. Plant J 69:37–46

    Article  CAS  PubMed  Google Scholar 

  • Soto-Cerda BJ, Duquid S, Booker H, Rowland G, Diederichsen A, Cloutier S (2014) Genomic regions underlying agronomic traits in linseed (Linum usitatissimum L.) as revealed by association mapping. J Integr Plant Biol 56:75–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sveinsson S, McDill J, Wong GK, Li J, Li X, Deyholos MK, Cronk QC (2014) Phylogenetic pinpointing of a paleopolyploidy events within the flax genus (Linum) using transcriptomics. Ann Bot 113:753–761

    Article  PubMed  Google Scholar 

  • Thambugala D, Duguid S, Loewen E, Rowland G, Booker H, You FM, Cloutier S (2013) Genetic variation of six desaturase genes in flax and their impact on fatty acid composition. Theor Appl Genet 126:2627–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson LU, Chen JM, Li T, Strasser-Weippl K, Goss PE (2005) Clin Cancer Res 11:3828–3836

    Article  CAS  PubMed  Google Scholar 

  • Venglat P, Xiang D, Qui S, Stone SL, Tibiche C, Cram D, Alting-Mees M, Nowak J, Cloutier S, Deyholos M, Bekkaoui F, Sharpe A, Wang E, Rowland G, Selvaraj G, Datla R (2011) Gene expression analysis of flax seed development. BMC Plant Biol 11:74. https://doi.org/10.1186/1471-2229-11-74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Yang L, Hawkins S, Neutelings G, Datla R, Lambert G, Galbraith DW, Grassa C, Geraldes A, Cronk QC, Cullis C, Dash PK, Kumar PA, Cloutier S, Sharpe AG, Wong GKS, Wang J, Deyholos MK (2012) The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 72:461–473

    Article  PubMed  Google Scholar 

  • Western TL, Young DS, Dean GH, Tan WL, Samuels AL, Haughn GW (2004) Plant Physiol 134:296–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wieczorek Z, Bengtsson B, Trojnar J, Siemion IZ (1991) Immunosuppressive activity of cyclolinopeptide A. Pept Res 4:275–283

    CAS  PubMed  Google Scholar 

  • Wu H, Pan A, Yu Z, Lu L, Zhang G, Yu D, Zong G, Zhou Y, Chen X, Tang L, Feng Y, Zhou H, Chen X, Li H, Demark-Wahnefried W, Hu FB, Lin X (2010) Lifestyle counseling and supplementation with flaxseed or walnuts influence the management of metabolic syndrome. J Nutr 140:1937–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Deyholos MK (2016) RNASeq analysis of the shoot apex of flax (Linum usitatissimum) to identify phloem fiber specification genes. Front Plant Sci 7:950

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raju S. S. Datla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Griffiths, J.S., Datla, R.S.S. (2019). Genetic Potential and Gene Expression Landscape in Flax. In: Cullis, C. (eds) Genetics and Genomics of Linum. Plant Genetics and Genomics: Crops and Models, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-23964-0_8

Download citation

Publish with us

Policies and ethics