Skip to main content

Excitonic Quasi-particles

  • Chapter
  • First Online:
Semiconductor Optics 1

Part of the book series: Graduate Texts in Physics ((GTP))

  • 2207 Accesses

Abstract

In this chapter we illustrate the quasi-particle properties of excitons, which are the bound states of electron–hole pair excitations in semiconductors and insulators. We will develop the concept of Wannier excitons to describe the wavefunction and dispersion relation of these excitations. We also introduce triplet excitons which are the (mostly dark) partners of the singlet ones. Then we discuss modifications of the simple exciton model due the phonon-related polarization of the crystalline lattice and introduce the exciton finestructure due to various exchange interactions. We close with an introduction to excitonic molecules (biexcitons) and charged excitons (trions).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Frenkel, Phys. Rev. 37, 17, 1276 (1931), Phys. Z. Sowjetunion 9, 158 (1936)

    Article  ADS  MathSciNet  Google Scholar 

  2. G.H. Wannier, Phys. Rev. 52, 191 (1937)

    Article  ADS  Google Scholar 

  3. H. Haken, Halbleiterprobleme IV, 1 (1955). Nuovo Cimento 3, 1230 (1956)

    Article  Google Scholar 

  4. L.I. Schiff, Quantum Mechanics, 2nd edn. (Mc Graw Hill, New York, 1955)

    MATH  Google Scholar 

  5. R.J. Elliot, Phys. Rev. 108, 1384 (1957)

    Article  ADS  Google Scholar 

  6. M.A. Lampert, Phys. Rev. Lett. 1, 450 (1958)

    Article  ADS  Google Scholar 

  7. S.A. Moskalenko, Opt. Spectrosc. 5, 147 (1958)

    Google Scholar 

  8. S. Nikitine, Prog. Semicond. 6(233), 269 (1962)

    Google Scholar 

  9. R.S. Knox, Theory of Excitons. Solid State Physics, Suppl. 5 (Academic, New York, 1963)

    Google Scholar 

  10. C.G. Kuper, G.D. Whitfield (eds.), Polarons and Excitons (Plenum, New York, 1963)

    Google Scholar 

  11. W.Y. Liang, A.D. Yoffe, Phys. Rev. Lett. 20, 59 (1968)

    Article  ADS  Google Scholar 

  12. Y. Toyozawa, J. Hermanson, Phys. Rev. Lett. 21, 1637 (1968)

    Article  ADS  Google Scholar 

  13. O. Akimoto, E. Hanamura, J. Phys. Soc. Jpn. 33, 1537 (1972), Solid State Commun. 10, 253 (1972)

    Google Scholar 

  14. W.F. Brinkman, T.M. Rice, B. Bell, Phys. Rev. B 8, 1570 (1972)

    Article  ADS  Google Scholar 

  15. L. Kalok, J. Treusch, Phys. Status Solidi A 52, K 125 (1972)

    Google Scholar 

  16. M.M. Denisov, V.P. Makarov, Phys. Status Solidi (b) 56, 9 (1973)

    Article  ADS  Google Scholar 

  17. W.T. Huang, Phys. Status Solidi (b) 60, 309 (1973)

    Article  ADS  Google Scholar 

  18. A. Haug, Festkörperprobleme XII 411 (1975)

    Google Scholar 

  19. B. Stébé, C. Conte, Solid State Commun. 19, 1237 (1976)

    Article  ADS  Google Scholar 

  20. D. Bimberg, Festkörperprobleme/Adv. Solid State Phys. 17, 195 (1977)

    Google Scholar 

  21. H. Haug, E. Hanamura, Phys. Rep. 33C, 209 (1977)

    ADS  Google Scholar 

  22. R.G. Ulbrich, C. Weisbuch, Festkörperprobleme/Adv. Solid State Phys. 18, 217 (1978)

    Google Scholar 

  23. K. Cho (ed.), Excitons, Topics in Current Physics, vol. 14 (Springer, Berlin, 1979)

    Google Scholar 

  24. U. Rössler, Festkörperprobleme/Adv. Solid State Phys. 19, 77 (1979)

    Google Scholar 

  25. A. Stahl, Ch. Uihlein, Festkörperprobleme/Adv. Solid State Phys. 19, 159 (1979)

    Google Scholar 

  26. D. Fröhlich, Festkörperprobleme/Adv. Solid State Phys. 21, 363 (1981)

    Google Scholar 

  27. C. Klingshirn, H. Haug, Phys. Rep. 70, 315 (1981)

    Article  ADS  Google Scholar 

  28. O. Madelung, U. Rössler (ed.), Landolt–Börnstein. New Series, Group III, vol. 17 a to i, 22 a and b, 41 A to D (Springer, Berlin, 1982–2001)

    Google Scholar 

  29. E.I. Rashba, M.D. Sturge (Eds.): Excitons, Modern Problems in Condensed Matter Sciences, vol. 2 (North-Holland, Amsterdam, New York 1982)

    Google Scholar 

  30. B. Hönerlage et al., Phys. Rep. 124, 161 (1985)

    Article  ADS  Google Scholar 

  31. M. Ueta, H. Kazanki, K. Kobayashi, Y. Toyozawa, E. Hanamura, Excitonic Processes in Solids. Springer Series in Solid State Sciences, vol. 60 (Springer, Berlin, 1986)

    Book  Google Scholar 

  32. R.D. Carson, S.E. Schnatterly, Phys. Rev. Lett. 59, 319 (1987)

    Article  ADS  Google Scholar 

  33. C.Y. Fong, I.P. Batra, S. Ciraci (eds.), Properties of Impurity States in Superlattice Semicondcutors. NATO ASI Series B, vol. 183 (Plenum, New York, 1988)

    Google Scholar 

  34. M. Krause, H.-E. Gummlich, U. Becker, Phys. Rev. B 37, 6336 (1988)

    Article  ADS  Google Scholar 

  35. J.N. Churchill, F.E. Holmstrom, Phys. Scr. 44, 395 (1991)

    Article  ADS  Google Scholar 

  36. H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 2nd edn. (World Scientific, Singapore, 1993)

    Google Scholar 

  37. N. Peyghambarian, S.W. Koch, A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice Hall, Englewood Cliffs, 1993)

    Google Scholar 

  38. G. Finkelstein, H. Shtrikman, I. Bar Joseph, Phys. Rev. Lett. 74, 976 (1995), Phys. Rev. B 53, 12593, R1709 (1996)

    Google Scholar 

  39. B. Stébé et al., Phys. Rev. B 56, 12454 (1997)

    Article  ADS  Google Scholar 

  40. A.J. Shields et al., Phys. Rev. B 55, R1970 (1997)

    Article  ADS  Google Scholar 

  41. A. Franceschetti, L.W. Wang, A. Zunger, Phys. Rev. B 58, 13367 (1998)

    Article  ADS  Google Scholar 

  42. M. Betz et al., Phys. Status Solidi b 231, 181 (2002)

    Article  ADS  Google Scholar 

  43. O. Gogolin et al., J. Lumin.102/103, 414, 451 (2003)

    Google Scholar 

  44. H-Ch. Weissker, J. FurthmĂĽller, F. Bechstedt, Phys. Rev. B 67, 165322 (2003)

    Article  ADS  Google Scholar 

  45. H. Kalt, M. Hetterich (eds.), Optics of Semiconductors and Their Nanostructures. Springer Series in Solid State Sciences, vol. 146 (Springer, Berlin, 2004)

    Google Scholar 

  46. A. Klochikhin et al., Phys. Rev. B 69, 085308 (2004)

    Article  ADS  Google Scholar 

  47. B.K. Meyer et al., Phys. Status Solidi b 241, 231 (2004)

    Article  ADS  Google Scholar 

  48. S.W. Koch et al., Nat. Mater. 5, 523 (2006)

    Article  ADS  Google Scholar 

  49. A.M. Frolov, Phys. Rev. A 80, 014502 (2009)

    Article  ADS  Google Scholar 

  50. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, 4th edn. (Springer, Heidelberg, 2010)

    Google Scholar 

  51. M.A. Becker et al., Nature 553, 189 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Kalt .

Problems

Problems

20.1

Calculate the Rydberg energy and the Bohr radius of excitons for some important semiconductors. The required material parameters can be found in Appendix C or, e.g., in [82L1]. Compare these with the experimentally determined binding energies and lattice constants, respectively.

20.2

How many (different) exciton states can be constructed in a semiconductor with zinc-blende \((T_{d})\) structure for the principal quantum numbers \(n_{{\mathrm {B}}}=1, 2\) and 3?

20.3

Compare the magnitude of the relative splitting between 2s and 2p states in a hydrogen atom (what are the physical reasons?) with the 2s–2p splitting of excitons.

20.4

Plot the Rydberg series of an idealized three- and two-dimensional exciton and indicate the oscillator strengths.

20.5

Calculate the (combined) density of states in the continuum of a three- and a two-dimensional exciton in the effective-mass approximation. Multiply by the corresponding Sommerfeld enhancement factor.

20.6

Find in the literature data for the binding energies of the exciton ground state and of the higher states (i.e. \({{n}}_{{\mathrm {B}}}{{S}}\) or \({{n}}_{{\mathrm {B}}}{{P}}\) states with \({{n}}_{{\mathrm {B}}} \ge 2\)), e.g., for GaAs, ZnO, CuCl and Cu\(_{2}\)O and determine for which ones the 1S state fits into the hydrogen series with higher states.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalt, H., Klingshirn, C.F. (2019). Excitonic Quasi-particles. In: Semiconductor Optics 1. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-24152-0_20

Download citation

Publish with us

Policies and ethics