Skip to main content

A Deep Belief Networks Based Prediction Method for Identification of Disease-Associated Non-coding SNPs in Human Genome

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11633))

Included in the following conference series:

  • 1677 Accesses

Abstract

Single nucleotide polymorphisms (SNPs), as one kind of the most common genetic variations, are responsible for individual differences. Furthermore, SNPs are found to be closely associated with many major kinds of diseases that could affect human health, such as hypertension, diabetes, cancer and mental illness. To accurately distinguish functionally related variants from the mass background genetic variations is a significant challenge facing biology and computer scientists and the challenge becomes more severe when dealing with variants in non-coding human genome. In this study, we present a deep belief networks (DBNs) based prediction method to identify candidate disease-associated non-coding SNPs in human genome. For feature extraction, we propose a digital coding based method to convent the nucleotide sequences of SNPs into numerical vectors directly as the input of DBNs. Then the DBNs with 10 layers are used to build the prediction model. 10-fold cross-validation result shows that the proposed method can achieve accuracy with the sensitivity of 73.48% and specificity of 74.31%. Since there is no any artificial feature needed, our approach can get rid of the dependence on huge amounts of genome annotation data which used by other traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, K., Deng, M., Chen, T., et al.: A dynamic programming algorithm for haplotype block partitioning. Proc. Natl. Acad. Sci. U.S.A. 99(11), 7335–7339 (2002)

    Article  MATH  Google Scholar 

  2. Adzhubei, I.A., Schmidt, S., Peshkin, L., et al.: A method and server for predicting damaging missense mutations. Nat. Methods 7(4), 248–249 (2010)

    Article  Google Scholar 

  3. McCarthy, M.I., Abecasis, G.R., et al.: Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9(5), 356–369 (2008)

    Article  Google Scholar 

  4. Hindorff, L.A., Sethupathy, P., Junkins, H.A., et al.: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. U.S.A. 106(23), 9362–9367 (2009)

    Article  Google Scholar 

  5. Kaiser, J.: NIH opens precision medicine study to nation. Science 349(6255), 1433 (2015)

    Article  Google Scholar 

  6. Shrager, J.: Precision medicine: fantasy meets reality. Science 353(6305), 1216–1217 (2016)

    Article  Google Scholar 

  7. Kumar, P., Henikoff, S., Ng, P.C.: Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4(7), 1073–1081 (2009)

    Article  Google Scholar 

  8. Fu, Y., Liu, Z., Lou, S., et al.: FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer. Genome Biol. 15(10), 480 (2014)

    Article  Google Scholar 

  9. Consortium, T.E.P.: An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414), 57–74 (2014)

    Article  Google Scholar 

  10. Kircher, M., Witten, D.M., Jain, P., et al.: A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46(3), 310–315 (2014)

    Article  Google Scholar 

  11. Dong, S.S., Guo, Y., Yao, S., et al.: Integrating regulatory features data for prediction of functional disease-associated SNPs. Brief. Bioinform. 20(1), 26–32 (2017)

    Article  Google Scholar 

  12. Li, C., Jiang, Y., Cheslyar, M.: Embedding Image through generated intermediate medium using deep convolutional generative adversarial network. CMC: Comput. Mater. Continua 56(2), 313–324 (2018)

    Google Scholar 

  13. Fang, W., Zhang, F., Sheng, V.S., et al.: A method for improving CNN-based image recognition using DCGAN. CMC: Comput. Mater. Continua 57(1), 167–178 (2018)

    Google Scholar 

  14. MacArthur, J., Bowler, E., Cerezo, M., et al.: The new NHGRI-EBI Catalog of published genome-wide association studies (GWASCatalog). Nucleic Acids Res. 45, D896–901 (2017)

    Article  Google Scholar 

  15. Sherry, S.T., Ward, M.H., Kholodov, M., et al.: dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29(1), 308–311 (2011)

    Article  Google Scholar 

  16. Ritchie, G.R., Dunham, I., Zeggini, E., et al.: Functional annotation of noncoding sequence variants. Nat. Methods 11(3), 294–296 (2014)

    Article  Google Scholar 

  17. International HapMap, C.: The international HapMap project. Nature 426(6968), 789–796 (2003)

    Article  Google Scholar 

  18. Yates, A., Akanni, W., Amode, M.R., et al.: Ensembl 2016. Nucleic Acids Res. 44, D710–D716 (2016)

    Article  Google Scholar 

  19. Beck, T., Hastings, R.K., Gollapudi, S., et al.: GWAS Central: a comprehensive resource for the comparison and interrogation of genome-wide association studies. Eur. J. Hum. Genet. 22(7), 949–952 (2014)

    Article  Google Scholar 

  20. Sun, Z.J., Xue, L., Xu, Y.M., et al.: Overview of deep learning. Appl. Res. Comput. (China) 29(8), 2806–2810 (2012)

    Google Scholar 

  21. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  22. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Fischer, A., Igel, C.: An introduction to restricted boltzmann machines. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 14–36. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33275-3_2

    Chapter  Google Scholar 

  24. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  25. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771 (2002)

    Article  MATH  Google Scholar 

  26. Roux, N.L., Bengio, Y.: Representational power of restricted boltzmann machines and deep belief networks. Neural Comput. 20(6), 1631 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–55 (2009)

    Article  MATH  Google Scholar 

  28. Hinton, G.E.: A practical guide to training restricted boltzmann machines. Momentum 9(1), 599–619 (2012)

    Google Scholar 

  29. Han, J.Q., Li, R., Zhang, X.M., et al.: A computational method for identification of disease-associated non-coding SNPs in human genome. In: IEEE/ACIS 16th International Conference on Computer and Information Science, pp. 125–129 (2017)

    Google Scholar 

Download references

Acknowledgment

We are grateful to the National Engineering Laboratory for Logistics Information Technology, YuanTong Express co. LTD.

Funding

This work was supported by grants from the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (No. NY218143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixin Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, R., Xiang, F., Wu, F., Sun, Z. (2019). A Deep Belief Networks Based Prediction Method for Identification of Disease-Associated Non-coding SNPs in Human Genome. In: Sun, X., Pan, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2019. Lecture Notes in Computer Science(), vol 11633. Springer, Cham. https://doi.org/10.1007/978-3-030-24265-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24265-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24264-0

  • Online ISBN: 978-3-030-24265-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics