Skip to main content

Quantify Physiologic Interactions Using Network Analysis

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Abstract

To better understand the neural interactions amongst human organ systems, this work provides a framework of data analysis to quantify forms of neural signalling. We explore network interactions among the human brain and motor controlling. The main objective of this work is to provoke unique challenges in the emerging Network Physiology field. The proposed method applies network analysis techniques including power coherence for connectivity discovering and correlation measurement for profiling relationships. We used a well-designed dataset of 50 subjects over 14 different scenarios for each individual. We found network models for these interactions and observed informative network behaviours. The information can be used to study impaired communications that can lead to dysfunction of organs or the entire system such as sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karasik, R., et al.: Correlation differences in heartbeat fluctuations during rest and exercise. Phys. Rev. E 66(6), 062902 (2002)

    Article  MathSciNet  Google Scholar 

  2. Bartsch, R.P., Liu, K.K., Bashan, A., Ivanov, P.C.: Network physiology: how organ systems dynamically interact. PloS One 10(11), e0142143 (2015)

    Article  Google Scholar 

  3. Ivanov, P.C., Liu, K.K.L., Lin, A., Bartsch, R.P.: Network physiology: from neural plasticity to organ network interactions. In: Mantica, G., Stoop, R., Stramaglia, S. (eds.) Emergent Complexity from Nonlinearity, in Physics, Engineering and the Life Sciences. SPP, vol. 191, pp. 145–165. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47810-4_12

    Chapter  Google Scholar 

  4. Deisboeck, T., Kresh, J.Y.: Complex Systems Science in Biomedicine. Springer, New York (2007). https://doi.org/10.1007/978-0-387-33532-2

    Google Scholar 

  5. Moorman, J.R., Lake, D.E., Ivanov, P.C.: Early detection of sepsis–a role for network physiology? Crit. Care Med. 44(5), e312–e313 (2016)

    Article  Google Scholar 

  6. Ivanov, P.C., Liu, K.K., Bartsch, R.P.: Focus on the emerging new fields of network physiology and network medicine. New J. Phys. 18(10), 100201 (2016)

    Article  Google Scholar 

  7. Ivanov, P.C., Amaral, L.N., Goldberger, A.L., Stanley, H.E.: Stochastic feedback and the regulation of biological rhythms. EPL (Europhys. Lett.) 43(4), 363 (1998)

    Article  Google Scholar 

  8. Xu, L., Chen, Z., Hu, K., Stanley, H.E., Ivanov, P.C.: Spurious detection of phase synchronization in coupled nonlinear oscillators. Phys. Rev. E 73(6), 065201 (2006)

    Article  Google Scholar 

  9. Gómez-Extremera, M., Bernaola-Galván, P.A., Vargas, S., Benítez-Porres, J., Carpena, P., Romance, A.R.: Differences in nonlinear heart dynamics during rest and exercise and for different training. Physiol. Meas. 39(8), 084008 (2018)

    Article  Google Scholar 

  10. Li, A., et al.: Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy. Netw. Neurosci. 2(02), 218–240 (2018)

    Article  Google Scholar 

  11. Protachevicz, P.R., et al.: Synchronous behaviour in network model based on human cortico-cortical connections. Physiol. Meas. 39(7), 074006 (2018)

    Article  Google Scholar 

  12. Kerkman, J.N., Daffertshofer, A., Gollo, L.L., Breakspear, M., Boonstra, T.W.: Network structure of the human musculoskeletal system shapes neural interactions on multiple time scales. Sci. Adv. 4(6), eaat0497 (2018)

    Article  Google Scholar 

  13. Piper, D., Schiecke, K., Pester, B., Benninger, F., Feucht, M., Witte, H.: Time-variant coherence between heart rate variability and EEG activity in epileptic patients: an advanced coupling analysis between physiological networks. New J. Phys. 16(11), 115012 (2014)

    Article  Google Scholar 

  14. Faes, L., Nollo, G., Jurysta, F., Marinazzo, D.: Information dynamics of brain-heart physiological networks during sleep. New J. Phys. 16(10), 105005 (2014)

    Article  Google Scholar 

  15. Stramaglia, S., Cortes, J.M., Marinazzo, D.: Synergy and redundancy in the granger causal analysis of dynamical networks. New J. Phys. 16(10), 105003 (2014)

    Article  Google Scholar 

  16. Bashan, A., Bartsch, R.P., Kantelhardt, J.W., Havlin, S., Ivanov, P.C.: Network physiology reveals relations between network topology and physiological function. Nat. Commun. 3, 702 (2012)

    Article  Google Scholar 

  17. Ferrari, F.A., Viana, R.L., Gomez, F., Lorimer, T., Stoop, R.: Macroscopic bursting in physiological networks: node or network property? New J. Phys. 17(5), 055024 (2015)

    Article  Google Scholar 

  18. Zhou, X., Menche, J., Barabási, A.L., Sharma, A.: Human symptoms-disease network. Nat. Commun. 5, 4212 (2014)

    Article  Google Scholar 

  19. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  Google Scholar 

  20. Challis, R., Kitney, R.: Biomedical signal processing (part 3 of 4): the power spectrum and coherence function. Med. Biol. Eng. Comput. 28(6), 509–524 (1990)

    Article  Google Scholar 

  21. Pearson, K.: Vii. mathematical contributions to the theory of evolution.–iii. regression, heredity, and panmixia. Philos. Trans. R. Soc. Lond. A, 187, 253–318 (1896). containing papers of a mathematical or physical character

    Google Scholar 

  22. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: EEG motor movement/imagery dataset (2009)

    Google Scholar 

  23. Goldberger, A.L., et al.: Physiobank, physiotoolkit, and physionet. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  24. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI 2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51(6), 1034–1043 (2004)

    Article  Google Scholar 

  25. Pham, T.T., et al.: Freezing of gait detection in Parkinson’s disease: a subject-independent detector using anomaly scores. IEEE Trans. Biomed. Eng. 64(11), 2719–2728 (2017)

    Article  Google Scholar 

  26. Pham, T.: Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings. Springer theses. Springer, Switzerland (2018). https://doi.org/10.1007/978-3-319-98675-3

    Book  Google Scholar 

  27. Pham, T.T., Nguyen, D.N., Dutkiewicz, E., McEwan, A.L., Leong, P.H.: Wearable healthcare systems: a single channel accelerometer based anomaly detector for studies of gait freezing in Parkinson’s disease. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thuy T. Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pham, T.T., Dutkiewicz, E. (2019). Quantify Physiologic Interactions Using Network Analysis. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24289-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24288-6

  • Online ISBN: 978-3-030-24289-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics