Skip to main content

Electronic Structure and Kinetics Calculations for the Si+SH Reaction, a Possible Route of SiS Formation in Star-Forming Regions

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Abstract

The reaction between atomic silicon and the mercapto radical has been computationally investigated by means of electronic structure and kinetics calculations to establish its possible role in the formation of interstellar SiS. According to our kinetics estimates based on the electronic structure calculations of the Si+SH potential energy surface, the reaction is very fast reaching the gas-kinetics limit. Therefore, the title reaction is an efficient formation route of interstellar SiS provided that silicon atoms and mercapto radicals are present. Implications for the observation of an anomalously high abundance of SiS in the shocked region around a Sun-like protostar (L1157-B1) are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morris, M., Gilmore, W., Palmer, P., Turner, B.E., Zuckerman, B.: Detection of interstellar SiS and a study of IRC+ 10216 molecular envelope. Astrophys. J. 199, L47–L51 (1975)

    Article  Google Scholar 

  2. Cernicharo, J., Guélin, M., Kahane, C.: A λ2 mm molecular line survey of the C-star envelope IRC+ 10216. Astron. Astrophys., Suppl. Ser. 142, 181 (2000)

    Article  Google Scholar 

  3. Prieto, L.V., et al.: Si-bearing molecules toward IRC+ 10216: ALMA unveils the molecular envelope of CWLeo. Astrophys. J. 805, L13 (2015)

    Article  Google Scholar 

  4. Dickinson, D.F., Kuiper, E.N.R.: Interstellar silicon sulfide. Astrophys. J. 247, 112 (1981)

    Article  Google Scholar 

  5. Ziurys, L.M.: SiS in Orion KL – Evidence for outflow chemistry. Astrophys. J. 324, 544–552 (1988)

    Article  Google Scholar 

  6. Ziurys, L.M.: SiS in outflow regions – more high-temperature silicon chemistry. Astrophys. J. 379, 260–266 (1991)

    Article  Google Scholar 

  7. Tercero, B., Vincent, L., Cernicharo, J., Viti, S., Marcelino, N.: A line-confusion limited millimeter survey of Orion KL II. Silicon-bearing species. Astron. Astrophys. 528, A26 (2011)

    Article  Google Scholar 

  8. MacKay, D.D.S.: The chemistry of silicon in hot molecular cores. Mon. Not. R. Astron. Soc. 274, 694–700 (1995)

    Article  Google Scholar 

  9. Podio, L., et al.: Silicon-bearing molecules in the shock L1157-B1: first detection of SiS around a Sun-like protostar. Mon. Not. R. Astron. Soc. Lett. 470(1), L16–L20 (2017)

    Article  Google Scholar 

  10. McGuire, B.A.: 2018 census of interstellar, circumstellar, extragalactic, protoplanetary disk, and exoplanetary molecules. Astrophys. J. Suppl. Ser. 239, 17 (2018)

    Article  Google Scholar 

  11. Rosi, M., et al.: Possible scenarios for SiS formation in the interstellar medium: electronic structure calculations of the potential energy surfaces for the reactions of the SiH radical with atomic sulphur and S2. Chem. Phys. Lett. 695, 87–93 (2018)

    Article  Google Scholar 

  12. Skouteris, D., et al.: A theoretical investigation of the reaction H + SiS2and implications for the chemistry of silicon in the interstellar medium. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10961, pp. 719–729. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95165-2_50

    Chapter  Google Scholar 

  13. Zanchet, A., Roncero, O., Agúndez, M., Cernicharo, J.: Formation and destruction of SiS in space. Astrophys. J. 862, 38 (2018)

    Article  Google Scholar 

  14. Holdship, K., et al.: H2S in the L1157-B1 bow shock. Mon. Not. R. Astron. Soc. 463, 802 (2016)

    Article  Google Scholar 

  15. Neufeld, D.A., et al.: Discovery of interstellar mercapto radicals (SH) with the GREAT instrument on SOFIA. Astron. Astrophys. 542, L6 (2012)

    Article  Google Scholar 

  16. Skouteris, D., Balucani, N., Faginas-Lago, N., Falcinelli, S., Rosi, M.: Dimerization of methanimine and its charged species in the atmosphere of Titan and interstellar/cometary ice analogs. Astron. Astrophys. 584, A76 (2015)

    Article  Google Scholar 

  17. Leonori, F., et al.: Crossed-beam and theoretical studies of the S(1D) + C2H2 Reaction. J. Phys. Chem. A 113, 4330–4339 (2009)

    Article  Google Scholar 

  18. Troiani, A., Rosi, M., Garzoli, S., Salvitti, C., de Petris, G.: Vanadium hydroxide cluster ions in the gas phase: bond-forming reactions of doubly-charged negative ions by SO2-promoted V-O activation. Chem. Eur. J. 23, 11752–11756 (2017)

    Article  Google Scholar 

  19. Berteloite, C., et al.: Low temperature kinetics, crossed beam dynamics and theoretical studies of the reaction S(1D) + CH4 and low temperature kinetics of S(1D) + C2H2. Phys. Chem. Chem. Phys. 13, 8485 (2011)

    Article  Google Scholar 

  20. Becke, A.D.: Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  Google Scholar 

  21. Stephens, P.J., Devlin, F.J., Chablowski, C.F., Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994)

    Article  Google Scholar 

  22. Dunning Jr., T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)

    Article  Google Scholar 

  23. Woon, D.E., Dunning Jr., T.H.: Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98, 1358–1371 (1983)

    Article  Google Scholar 

  24. Dunning Jr., T.H., Peterson, K.A., Wilson, A.K.: Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited. J. Chem. Phys. 114, 9244–9253 (2001)

    Article  Google Scholar 

  25. Gonzalez, C., Schlegel, H.B.: An improved algorithm for reaction path following. J. Chem. Phys. 90, 2154–2161 (1989)

    Article  Google Scholar 

  26. Gonzalez, C., Schlegel, H.B.: Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94, 5523–5527 (1990)

    Article  Google Scholar 

  27. Bartlett, R.J.: Many-body perturbation theory and coupled cluster theory for electron correlation in molecules. Annu. Rev. Phys. Chem. 32, 359–401 (1981)

    Article  Google Scholar 

  28. Raghavachari, K., Trucks, G.W., Pople, J.A., Head-Gordon, M.: Quadratic configuration interaction. A general technique for determining electron correlation energies. Chem. Phys. Lett. 157, 479–483 (1989)

    Article  Google Scholar 

  29. Olsen, J., Jorgensen, P., Koch, H., Balkova, A., Bartlett, R.J.: Full configuration–interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions. J. Chem. Phys. 104, 8007–8015 (1996)

    Article  Google Scholar 

  30. Rosi, M., et al.: An experimental and theoretical investigation of 1-butanol pyrolysis. Front. Chem. 7, 326 (2019). https://doi.org/10.3389/fchem.2019.00326

    Article  Google Scholar 

  31. Frisch, M.J., et al.: Gaussian 09, Revision A. 02. Gaussian, Inc., Wallingford (2009)

    Google Scholar 

  32. Flükiger, P., Lüthi, H.P., Portmann, S., Weber, J.: MOLEKEL 4.3. Swiss Center for Scientific Computing, Manno (2000–2002)

    Google Scholar 

  33. Portmann, S., Lüthi, H.P.: MOLEKEL: an interactive molecular graphics tool. Chimia 54, 766–769 (2000)

    Google Scholar 

  34. Barone, V., et al.: Gas-phase formation of the prebiotic molecule formamide: insights from new quantum computations. Mon. Not. R. Astron. Soc. Lett. 453, L31–L35 (2015)

    Article  Google Scholar 

  35. Skouteris, D., Vazart, F., Ceccarelli, C., Balucani, N., Puzzarini, C., Barone, V.: New quantum chemical computations of formamide deuteration support gas-phase formation of this prebiotic molecule. Mon. Not. R. Astron. Soc. Lett. 468, L1–L5 (2017)

    Google Scholar 

  36. Skouteris, D., et al.: The genealogical tree of ethanol: gas-phase formation of glycolaldehyde, acetic acid and formic acid. Astrophys. J. 854, 135 (2018)

    Article  Google Scholar 

  37. Vazart, F., Latouche, C., Skouteris, D., Balucani, N., Barone, V.: Cyanomethanimine isomers in cold interstellar clouds: insights from electronic structure and kinetic calculations. Astrophys. J. 810, 111 (2015)

    Article  Google Scholar 

  38. Leonori, F., et al.: Crossed-beam dynamics, low-temperature kinetics, and theoretical studies of the reaction S(1D) + C2H4. J. Phys. Chem. A 113, 15328–15345 (2009)

    Article  Google Scholar 

  39. Balucani, N., et al.: Combined crossed beam and theoretical studies of the N(2D) + C2H4 reaction and implications for atmospheric models of Titan. J. Phys. Chem. A 116, 10467–10479 (2012)

    Article  Google Scholar 

  40. Leonori, F., Skouteris, D., Petrucci, R., Casavecchia, P., Rosi, M., Balucani, N.: Combined crossed beam and theoretical studies of the C(1D) + CH4 reaction. J. Chem. Phys. 138(2), 024311 (2013)

    Article  Google Scholar 

  41. Balucani, N., et al.: Formation of nitriles and imines in the atmosphere of Titan: combined crossed-beam and theoretical studies on the reaction dynamics of excited nitrogen atoms N(2D) with ethane. Faraday Discuss. 147, 189–216 (2010)

    Article  Google Scholar 

  42. Balucani, N., et al.: Combined crossed molecular beam and theoretical studies of the N(2D) + CH4 reaction and implications for atmospheric models of Titan. J. Phys. Chem. A 113, 11138–11152 (2009)

    Article  Google Scholar 

  43. Dayou, D., Duflot, D., Rivero-Santamaría, A., Monnerville, M.: A global ab initio potential energy surface for the X2A′ ground state of the Si + OH → SiO + H reaction. J. Chem. Phys. 139, 204305 (2013)

    Article  Google Scholar 

  44. Rivero-Santamaría, A., Dayou, D., Rubayo-Soneirac, J., Monnerville, M.: Quasi-classical trajectory calculations of cross sections and rateconstants for the Si + OH → SiO + H reaction. Chem. Phys. Lett. 610–611, 335–340 (2014)

    Article  Google Scholar 

  45. Wakelam, V., et al.: The 2014 KIDA network for interstellar chemistry. Astrophys. J. Suppl. Ser. 217(2), 20 (2015)

    Article  Google Scholar 

  46. McElroy, D., Walsh, C., Markwick, A.J., Cordiner, M.A., Smith, K., Millar, T.J.: The UMIST database for astrochemistry 2012. Astron. Astrophys. 550, A36 (2013)

    Article  Google Scholar 

  47. Yang, T., Thomas, A.M., Dangi, B.B., Kaiser, R.I., Mebel, A.M., Millar, T.J.: Directed gas phase formation of silicon dioxide and implications for the formation of interstellar silicates. Nat. Commun. 9, 774 (2018)

    Article  Google Scholar 

  48. Ceccarelli, C., Viti, S., Balucani, N., Taquet, V.: The evolution of grain mantles and silicate dust growth at high redshift. Mon. Not. R. Astron. Soc. 476, 1371–1383 (2018)

    Article  Google Scholar 

  49. Balucani, N., Ceccarelli, C., Taquet, V.: Formation of complex organic molecules in cold objects: the role of gas-phase reactions. Mon. Not. R. Astron. Soc. 449, L16–L20 (2015)

    Article  Google Scholar 

  50. Skouteris, D., et al.: Interstellar dimethyl ether gas-phase formation: a quantum chemistry and kinetics study. Mon. Not. R. Astron. Soc. 482, 3567–3575 (2019)

    Article  Google Scholar 

  51. Ascenzi, D., Cernuto, A., Balucani, N., Tosi, P., Ceccarelli, C., Martini, L. M., Pirani, F.: Destruction of dimethyl ether and methyl formate by collisions with He+. Astronom. Astrophys. (2019, in press). https://doi.org/10.1051/0004-6361/201834585

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by MIUR “PRIN 2015” funds, project “STARS in the CAOS (Simulation Tools for Astrochemical Reactivity and Spectroscopy in the Cyberinfrastructure for Astrochemical Organic Species)”, Grant Number 2015F59J3R and by the project PRIN-INAF 2016 The Cradle of Life - GENESIS-SKA (General Conditions in Early Planetary Systems for the rise of life with SKA). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, for the Project “The Dawn of Organic Chemistry” (DOC), grant agreement No 741002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzio Rosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosi, M. et al. (2019). Electronic Structure and Kinetics Calculations for the Si+SH Reaction, a Possible Route of SiS Formation in Star-Forming Regions. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11621. Springer, Cham. https://doi.org/10.1007/978-3-030-24302-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24302-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24301-2

  • Online ISBN: 978-3-030-24302-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics