Skip to main content

Molecular Dynamics of Chiral Molecules in Hyperspherical Coordinates

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11624))

Included in the following conference series:

Abstract

The role of chirality in molecular collisions, in connection to chiral discrimination, lacks a striking experimental demonstration. This is due to difficulties in setting up apparatuses allowing for a strict control of the spatial distribution and alignment of the molecules and to lack of adequate theoretical and computational approaches to design experiments, anticipate results and interpret data. Here we illustrate a theoretical approach to the description of chiral effects in collisions to search for a stereo-directional origin of chiral discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aquilanti, V., Beddoni, A., Cavalli, S., Lombardi, A., Littlejohn, R.: Collective hyperspherical coordinates for polyatomic molecules and clusters. Mol. Phys. 98(21), 1763–1770 (2000)

    Google Scholar 

  2. Aquilanti, V., Beddoni, A., Lombardi, A., Littlejohn, R.: Hyperspherical harmonics for polyatomic systems: basis set for kinematic rotations. Int. J. Quantum Chem. 89(4), 277–291 (2002)

    Google Scholar 

  3. Aquilanti, V., Lombardi, A., Littlejohn, R.: Hyperspherical harmonics for polyatomic systems: basis set for collective motions. Theoret. Chem. Acc. 111(2–6), 400–406 (2004)

    Google Scholar 

  4. Sevryuk, M.B., Lombardi, A., Aquilanti, V.: Hyperangular momenta and energy partitions in multidimensional many-particle classical mechanics: the invariance approach to cluster dynamics. Phys. Rev. A 72(3), 033201 (2005)

    MathSciNet  Google Scholar 

  5. Lombardi, A., Palazzetti, F.: Chirality in molecular collision dynamics. J. Phys.: Condens. Matter 30(6), 063003 (2018)

    Google Scholar 

  6. Lombardi, A., Palazzetti, F., Peroncelli, L., Grossi, G., Aquilanti, V., Sevryuk, M.: Few-body quantum and many-body classical hyperspherical approaches to reactions and to cluster dynamics. Theoret. Chem. Acc. 117(5–6), 709–721 (2007)

    Google Scholar 

  7. Aquilanti, V., Lombardi, A., Yurtsever, E.: Global view of classical clusters: the hyperspherical approach to structure and dynamics. Phys. Chem. Chem. Phys. 4(20), 5040–5051 (2002)

    Google Scholar 

  8. Barron, L.D.: True and false chirality and absolute asymmetric synthesis. J. Am. Chem. Soc. 108, 5539–5542 (1986)

    Google Scholar 

  9. Barron, L.D.: True and false chirality and absolute enantioselection. Rend. Fis. Acc. Lincei 24, 179–189 (2013)

    Google Scholar 

  10. Ribó, J.M., Crusatz, J., Sagués, F., Claret, J., Rubires, R.: Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 292, 2063–2066 (2001)

    Google Scholar 

  11. Aquilanti, V., Ascenzi, D., Cappelletti, D., Pirani, F.: Velocity dependence of collisional alignment of oxygen molecules in gaseous expansions. Nature 371, 399–402 (1994)

    Google Scholar 

  12. Aquilanti, V., Grossi, G., Lombardi, A., Maciel, G.S., Palazzetti, F.: Aligned molecular collisions and a stereodynamical mechanism for selective chirality. Rend. Fis. Acc. Lincei 22, 125–135 (2011)

    Google Scholar 

  13. Zhao, B., Guo, H.: State-to-state quantum reactive scattering in four-atom systems. WIREs Comput. Mol. Sci. 7, e1301 (2017)

    Google Scholar 

  14. Aquilanti, V., Beddoni, A., Lombardi, A., Littlejohn, R.: Hyperspherical harmonics for polyatomic systems: basis set for kinematic rotations. Int. J. Quantum Chem. 89, 277–291 (2002)

    Google Scholar 

  15. Aquilanti, V., Beddoni, A., Cavalli, S., Lombardi, A., Littlejohn, R.: Collective hyperspherical coordinates for polyatomic molecules and clusters. Mol. Phys. 98, 1763–1770 (2000)

    Google Scholar 

  16. Hase, W., et al.: J. Quantum. Chem. Program Exch. Bull. 16, 671 (1996)

    Google Scholar 

  17. Billing, G.: Comput. Phys. Rep. 1, 239–296 (1984)

    Google Scholar 

  18. Laganà, A., Crocchianti, S., Faginas Lago, N., Pacifici, L., Ferraro, G.: A nonorthogonal coordinate approach to atom-diatom parallel reactive scattering calculations. Collect. Czech. Chem. Commun. 68, 307–330 (2003)

    Google Scholar 

  19. Lago, N.F., Laganà, A., Garcia, E., Gimenez, X.: Thermal rate coefficients for the N + N2 reaction: quasiclassical, semiclassical and quantum calculations. In: Gervasi, O., et al. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 1083–1092. Springer, Heidelberg (2005). https://doi.org/10.1007/11424758_113

    Chapter  Google Scholar 

  20. Faginas-Lago, N., Laganá, A.: A comparison of semiclassical IVR and exact quantum collinear atom diatom transition probabilities for mixed reactive and non reactive regimes. In: AIP Conference Proceedings, vol. 762, p. 920 (2005)

    Google Scholar 

  21. Faginas-Lago, N., Laganà, A.: On the semiclassical initial value calculation of thermal rate coefficients for the N + N\(_2\) reaction. J. Chem. Phys. 125, 114311 (2006)

    Google Scholar 

  22. Faginas-Lago, N., Costantini, A., Huarte-Larrañaga, F.: Direct calculation of the rate coefficients on the grid: exact quantum versus semiclassical results for N+ N2. Int. J. Quantum Chem. 110(2), 422–431 (2010)

    Google Scholar 

  23. Faginas, N., Huarte-Larranaga, F., Laganà, A.: Full dimensional quantum versus semiclassical reactivity for the bent transition state reaction N + N\(_2\). Chem. Phys. Lett. 464, 249–255 (2008)

    Google Scholar 

  24. Rampino, S., Faginas-Lago, N., Laganà, A., Huarte-Larrañaga, F.: An extension of the grid empowered molecular simulator to quantum reactive scattering. J. Comput. Chem. 33, 708–714 (2012)

    Google Scholar 

  25. De Fazio, D.: The H + HeH\(^+\)\(\rightarrow \) He + H\(_{2}^{+}\)+ reaction from the ultra-cold regime to the three-body breakup: exact quantum mechanical integral cross sections and rate constants. Phys. Chem. Chem. Phys. 16, 11662–11672 (2014)

    Google Scholar 

  26. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. University Press, Cambridge (1990)

    Google Scholar 

  27. Sevryuk, M.B., Lombardi, A., Aquilanti, V.: Hyperangular momenta and energy partitions in multidimensional many-particle classical mechanics: the invariance approach to cluster dynamics. Phys. Rev. A 72, 033201 (2005)

    MathSciNet  Google Scholar 

  28. Gatti, F., Lung, C.: Vector parametrization of the \(n\)-atom problem in quantum mechanics. I. Jacobi vectors. J. Chem. Phys. 108, 8804–8820 (1998)

    Google Scholar 

  29. Aquilanti, V., Lombardi, A., Yurtsever, E.: Global view of classical clusters: the hyperspherical approach to structure and dynamics. Phys. Chem. Chem. Phys. 4, 5040–5051 (2002)

    Google Scholar 

  30. Aquilanti, V., Lombardi, A., Sevryuk, M.B.: Phase-space invariants for aggregates of particles: hyperangular momenta and partitions of the classical kinetic energy. J. Chem. Phys. 121, 5579 (2004)

    Google Scholar 

  31. Aquilanti, V., Lombardi, A., Littlejohn, R.G.: Hyperspherical harmonics for polyatomic systems: basis set for collective motions. Theoret. Chem. Acc. 111, 400–406 (2004)

    Google Scholar 

  32. Aquilanti, V., Carmona Novillo, E., Garcia, E., Lombardi, A., Sevryuk, M.B., Yurtsever, E.: Invariant energy partitions in chemical reactions and cluster dynamics simulations. Comput. Mater. Sci. 35, 187–191 (2006)

    Google Scholar 

  33. Aquilanti, V., Lombardi, A., Sevryuk, M.B., Yurtsever, E.: Phase-space invariants as indicators of the critical behavior of nanoaggregates. Phys. Rev. Lett. 93, 113402 (2004)

    Google Scholar 

  34. Calvo, F., Gadea, X., Lombardi, A., Aquilanti, V.: Isomerization dynamics and thermodynamics of ionic argon clusters. J. Chem. Phys. 125, 114307 (2006)

    Google Scholar 

  35. Lombardi, A., Aquilanti, V., Yurtsever, E., Sevryuk, M.B.: Specific heats of clusters near a phase transition: energy partitions among internal modes. Chem. Phys. Lett. 30, 424–428 (2006)

    Google Scholar 

  36. Barreto, P.R.P., Vilela, A.F.A., Lombardi, A., Maciel, G.S., Palazzetti, F., Aquilanti, V.: The hydrogen peroxide-rare gas systems: quantum chemical calculations and hyperspherical harmonic representation of the potential energy surface for atom-floppy molecule interactions. J. Phys. Chem. A 111, 12754–12762 (2007)

    Google Scholar 

  37. Maciel, G.S., Barreto, P.R.P., Palazzetti, F., Lombardi, A., Aquilanti, V.: A quantum chemical study of h\(_2\)s\(_2\): intramolecular torsional mode and intermolecular interactions with rare gases. J. Phys. Chem. A 129, 164302 (2008)

    Google Scholar 

  38. Barreto, P.R.P., Palazzetti, F., Grossi, G., Lombardi, A., Maciel, G., Vilela, A.F.A.: Range and strength of intermolecular forces for van der Waals complexes of the type H\(_2\)X\(_n\)-Rg, with x = o, s and n = 1, 2. Int. J. Quantum Chem. 110, 777–786 (2010)

    Google Scholar 

  39. Palazzetti, F., Munusamy, E., Lombardi, A., Grossi, G., Aquilanti, V.: Spherical and hyperspherical representation of potential energy surfaces for intermolecular interactions. Int. J. Quantum Chem. 111, 318–332 (2011)

    Google Scholar 

  40. Aquilanti, V., Cavalli, S.: The quantum-mechanical Hamiltonian for tetraatomic systems in symmetric hyperspherical coordinates. J. Chem. Soc. Faraday Trans. 93, 801–809 (1997)

    Google Scholar 

  41. Barreto, P.R.P., Albernaz, A.F., Palazzetti, F.: Potential energy surfaces for van der Waals complexes of rare gases with \({\rm H}_2\)S and \({\rm H}_2{\rm S}_2\): extension to xenon interactions and hyperspherical harmonics representation. Int. J. Quantum Chem. 112, 834–847 (2012)

    Google Scholar 

  42. Lombardi, A., et al.: Spherical and hyperspherical harmonics representation of van der Waals aggregates. In: AIP Conference Proceedings, vol. 1790, p. 020005 (2016)

    Google Scholar 

  43. Aquilanti, V., Caglioti, C., Lombardi, A., Maciel, G.S., Palazzetti, F.: Screens for displaying chirality changing mechanisms of a series of peroxides and persulfides from conformational structures computed by quantum chemistry. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10408, pp. 354–368. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62404-4_26

    Chapter  Google Scholar 

  44. Aquilanti, V., Cavalli, S., Coletti, C., di Domenico, D., Grossi, G.: Int. Rev. Phys. Chem. 20, 673 (2001)

    Google Scholar 

  45. Varshalovich, D.A.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1958)

    Google Scholar 

  46. Castro-Palacio, J.C., Velasquez Abad, L., Lombardi, A., Aquilanti, V.: Normal and hyperspherical mode analysis of NO-doped Kr crystals upon Rydberg excitation of the impurity. J. Chem. Phys. 126, 174701 (2007)

    Google Scholar 

  47. Castro Palacio, J.C., Rubayo-Soneira, J., Lombardi, A., Aquilanti, V.: Molecular dynamics simulations and hyperspherical mode analysis of NO in Kr crystals with the use of ab initio potential energy surfaces for the Kr-NO complex. Int. J. Quantum Chem. 108, 1821–1830 (2008)

    Google Scholar 

  48. Lombardi, A., Lago, N.F., Laganà, A., Pirani, F., Falcinelli, S.: A bond-bond portable approach to intermolecular interactions: simulations for N-methylacetamide and carbon dioxide dimers. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 387–400. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_30

    Chapter  Google Scholar 

  49. Lombardi, A., Laganà, A., Pirani, F., Palazzetti, F., Lago, N.F.: Carbon oxides in gas flows and earth and planetary atmospheres: state-to-state simulations of energy transfer and dissociation reactions. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7972, pp. 17–31. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39643-4_2

    Chapter  Google Scholar 

  50. Lago, N.F., Albertí, M., Laganà, A., Lombardi, A.: Water (H\(_2\)O)m or Benzene (C\(_6\)H\(_6\))n aggregates to solvate the K+? In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7971, pp. 1–15. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39637-3_1

    Chapter  Google Scholar 

  51. Faginas-Lago, N., Albertí, M., Costantini, A., Laganá, A., Lombardi, A., Pacifici, L.: An innovative synergistic grid approach to the computational study of protein aggregation mechanisms. J. Mol. Model. 20(7), 2226 (2014)

    Google Scholar 

  52. Faginas-Lago, N., Yeni, D., Huarte, F., Alcamì, M., Martin, F.: Adsorption of hydrogen molecules on carbon nanotubes using quantum chemistry and molecular dynamics. J. Phys. Chem. A 120, 6451–6458 (2016)

    Google Scholar 

  53. Faginas-Lago, N., Lombardi, A., Albertí, M., Grossi, G.: Accurate analytic intermolecular potential for the simulation of Na+ and K\(^+\) ion hydration in liquid water. J. Mol. Liq. 204, 192–197 (2015)

    Google Scholar 

  54. Albertí, M., Faginas Lago, N.: Competitive solvation of k\(^{+}\) by C\(_6\)H\(_6\) and H\(_2\)O in the k\(^{+}\)\(-\)(C\(_6\)h\(_6\))\(_n\)\(-\)(H\(_2\)O)\(_m\) (\(n = 1-4; m = 1-6\)) aggregates. Eur. Phys. J. D 67, 73 (2013)

    Google Scholar 

  55. Albertí, M., Faginas Lago, N.: Ion size influence on the ar solvation shells of M\(^+\)-C\(_6\)F\(_6\) clusters (m = na, k, rb, cs). J. Phys. Chem. A 116, 3094–3102 (2012)

    Google Scholar 

  56. Albertí, M., Faginas Lago, N., Pirani, F.: Ar solvation shells in K\(^+\)-HFBz: from cluster rearrangement to solvation dynamics. J. Phys. Chem. A 115, 10871–10879 (2011)

    Google Scholar 

  57. Lago, N.F., Albertí, M., Laganà, A., Lombardi, A., Pacifici, L., Costantini, A.: The molecular stirrer catalytic effect in methane ice formation. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 585–600. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09144-0_40

    Chapter  Google Scholar 

  58. Faginas-Lago, N., Huarte Larrañaga, F., Albertí, M.: On the suitability of the ILJ function to match different formulations of the electrostatic potential for water-water interactions. Eur. Phys. J. D 55(1), 75 (2009)

    Google Scholar 

  59. Bartolomei, M., Pirani, F., Laganà, A., Lombardi, A.: J. Comput. Chem. 33, 1806 (2012)

    Google Scholar 

  60. Albertí, M., Faginas-Lago, N., Laganà, A., Pirani, F.: A portable intermolecular potential for molecular dynamics studies of NMA-NMA and NMA-H\(_2\)O aggregates. Phys. Chem. Chem. Phys. 13(18), 8422–8432 (2011)

    Google Scholar 

  61. Albertí, M., Faginas-Lago, N., Pirani, F.: J. Phys. Chem. A 115(40), 10871–10879 (2011)

    Google Scholar 

  62. Albertí, M., Faginas-Lago, N.: Eur. Phys. J. D 67, 73 (2013)

    Google Scholar 

  63. Albertí, M., Faginas-Lago, N., Pirani, F.: Chem. Phys. 399, 232 (2012)

    Google Scholar 

  64. Falcinelli, S., et al.: Modeling the intermolecular interactions and characterization of the dynamics of collisional autoionization processes. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7971, pp. 69–83. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39637-3_6

    Chapter  Google Scholar 

  65. Lombardi, A., Faginas-Lago, N., Pacifici, L., Costantini, A.: Modeling of energy transfer from vibrationally excited CO\(_2\) molecules: cross sections and probabilities for kinetic modeling of atmospheres, flows, and plasmas. J. Phys. Chem. A 117(45), 11430–11440 (2013)

    Google Scholar 

  66. Lombardi, A., Pirani, F., Laganà, A., Bartolomei, M.: Energy transfer dynamics and kinetics of elementary processes (promoted) by gas-phase CO\(_2\)-N\(_2\) collisions: selectivity control by the anisotropy of the interaction. J. Comput. Chem. 37, 1463–1475 (2016)

    Google Scholar 

  67. Pacifici, L., Verdicchio, M., Faginas-Lago, N., Lombardi, A., Costantini, A.: A high-level ab initio study of the N\(_2\) + N\(_2\) reaction channel. J. Comput. Chem. 34(31), 2668–2676 (2013)

    Google Scholar 

  68. Lombardi, A., Faginas-Lago, N., Pacifici, L., Grossi, G.: Energy transfer upon collision of selectively excited CO\(_2\) molecules: state-to-state cross sections and probabilities for modeling of atmospheres and gaseous flows. J. Chem. Phys. 143, 034307 (2015)

    Google Scholar 

  69. Lombardi, A., Faginas-Lago, N., Pacifici, L., Costantini, A.: Modeling of energy transfer from vibrationally excited CO\(_2\) molecules: cross sections and probabilities for kinetic modeling of atmospheres, flows, and plasmas. J. Phys. Chem. A 117, 11430–11440 (2013)

    Google Scholar 

  70. Celiberto, R., et al.: Atomic and molecular data for spacecraft re-entry plasmas. Plasma Sources Sci. Technol. 25, 033004 (2016)

    Google Scholar 

  71. Musigmann, M., Busalla, A., Blum, K., Thompson, D.G.: Enantio-selective collisions between unpolarized electrons and chiral molecules. J. Phys. Chem. B 34, L79–L85 (2001)

    Google Scholar 

  72. Aquilanti, V., Grossi, G., Lombardi, A., Maciel, G.S., Palazzetti, F.: The origin of chiral discrimination: supersonic molecular beam experiments and molecular dynamics simulations of collisional mechanisms. Phys. Scr. 78, 058119 (2008)

    Google Scholar 

  73. Lombardi, A., Palazzetti, F., Maciel, G.S., Aquilanti, V., Sevryuk, M.B.: Simulation of oriented collision dynamics of simple chiral molecules. Int. J. Quantum Chem. 111, 1651–1658 (2011)

    Google Scholar 

  74. Herbst, E., DeFrees, D.J., McLean, A.D.: Ab initio determination of mode coupling in HSSH: the torsional splitting in the first excited S-S stretching state. J. Chem. Phys. 91, 5905 (1989)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from MIUR PRIN 2010-2011 (contract 2010ERFKXL\(\_\)002) and from “Fondazione Cassa di Risparmio di Perugia (Codice Progetto: 2015.0331.021 Ricerca Scientifica e Tecnologica)”. They also acknowledge the Italian Ministry for Education, University and Research, MIUR, for financial supporting through SIR 2014 “Scientific Independence for young Researchers” (RBSI14U3VF). Thanks are due to the Dipartimento di Chimica, Biologia e Biotecnologie dell’Università di Perugia (FRB, Fondo per la Ricerca di Base 2017) and to the MIUR and the University of Perugia for the financial support of the AMIS project through the program “Dipartimenti di Eccellenza”. A. L. acknowledges financial support from MIUR PRIN 2015 (contract 2015F59J3R\(\_\)002). A.L. thanks the OU Supercomputing Center for Education & Research (OSCER) at the University of Oklahoma, for allocated computing time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Lombardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lombardi, A., Palazzetti, F., Aquilanti, V. (2019). Molecular Dynamics of Chiral Molecules in Hyperspherical Coordinates. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11624. Springer, Cham. https://doi.org/10.1007/978-3-030-24311-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24311-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24310-4

  • Online ISBN: 978-3-030-24311-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics