Skip to main content

Molecular Biology and Genetics of Renal Cell Carcinoma

  • Chapter
  • First Online:
Renal Cancer

Abstract

Renal cell carcinomas (RCCs) are a heterogeneous family of tumors with distinct histologic appearances, underlying genetics, and clinical behaviors. In the past few decades, the genetic pathways involved in each subtype have been elucidated by studies of familial or hereditary forms of renal cancer, as well as advancements in molecular genetics, which form the basis for the findings in this textbook chapter and which have culminated in the comprehensive knowledge of the molecular basis of renal cell carcinomas elucidated by work by the Cancer Genome Atlas (TCGA) project. Understanding more about the single-gene syndromes like von Hippel-Lindau (VHL), hereditary papillary RCC, Birt-Hogg-Dube, and hereditary leiomyomatosis RCC, described herein, will eventually enable clinician scientists to develop pathway-specific and more personalized therapies for RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Linehan WM, Walther MM, Zbar B. The genetic basis of cancer of the kidney. J Urol. 2003;170(6. Pt 1):2163–72.

    Article  CAS  PubMed  Google Scholar 

  2. Linehan WM, Srinivasan R, Schmidt LS. The genetic basis of kidney cancer: a metabolic disease. Nat Rev Urol. 2010;7(5):277–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zbar B, Brauch H, Talmadge C, Linehan M. Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature. 1987;327(6124):721–4.

    Article  CAS  PubMed  Google Scholar 

  4. Klatte T, Pantuck AJ. Molecular biology of renal cortical tumors. Urol Clin North Am. 2008;35(4):573–80. vi.

    Article  PubMed  Google Scholar 

  5. Guo G, Gui Y, Gao S, et al. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat Genet. 2011;44(1):17–9.

    Article  CAS  PubMed  Google Scholar 

  6. Eder AM, Sui X, Rosen DG, et al. Atypical PKCiota contributes to poor prognosis through loss of apical-basal polarity and cyclin E overexpression in ovarian cancer. Proc Natl Acad Sci U S A. 2005;102(35):12519–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cancer Genome Atlas Research Network TCGAR. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–9.

    Article  CAS  Google Scholar 

  8. Shen C, Beroukhim R, Schumacher SE, et al. Genetic and functional studies implicate HIF1α as a 14q kidney cancer suppressor gene. Cancer Discov. 2011;1(3):222–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Herbers J, Schullerus D, Müller H, et al. Significance of chromosome arm 14q loss in nonpapillary renal cell carcinomas. Genes Chromosomes Cancer. 1997;19(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  10. Herman JG, Latif F, Weng Y, et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A. 1994;91(21):9700–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115(7):787–98.

    Article  CAS  PubMed  Google Scholar 

  12. Modena P, Testi MA, Facchinetti F, et al. UQCRH gene encoding mitochondrial Hinge protein is interrupted by a translocation in a soft-tissue sarcoma and epigenetically inactivated in some cancer cell lines. Oncogene. 2003;22(29):4586–93.

    Article  CAS  PubMed  Google Scholar 

  13. Wagner EJ, Carpenter PB. Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol. 2012;13(2):115–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brannon AR, Reddy A, Seiler M, et al. Molecular stratification of clear cell renal cell carcinoma by consensus clustering reveals distinct subtypes and survival patterns. Genes Cancer. 2010;1(2):152–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. He X, Wang J, Messing EM, Wu G. Regulation of receptor for activated C kinase 1 protein by the von Hippel-Lindau tumor suppressor in IGF-I-induced renal carcinoma cell invasiveness. Oncogene. 2011;30(5):535–47.

    Article  CAS  PubMed  Google Scholar 

  16. Duran A, Amanchy R, Linares JF, et al. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell. 2011;44(1):134–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ravaud A, Hawkins R, Gardner JP, et al. Lapatinib versus hormone therapy in patients with advanced renal cell carcinoma: a randomized phase III clinical trial. J Clin Oncol. 2008;26(14):2285–91.

    Article  CAS  PubMed  Google Scholar 

  18. Tong WH, Sourbier C, Kovtunovych G, et al. The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels. Cancer Cell. 2011;20(3):315–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu Y, Yoon SO, Poulogiannis G, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science (New York, NY). 2011;332(6035):1322–6.

    Article  CAS  Google Scholar 

  20. Seizinger BR, Rouleau GA, Ozelius LJ, et al. Von Hippel–Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature. 1988;332(6161):268–9.

    Article  CAS  PubMed  Google Scholar 

  21. Gallou C, Joly D, Méjean A, et al. Mutations of the VHL gene in sporadic renal cell carcinoma: definition of a risk factor for VHL patients to develop an RCC. Hum Mutat. 1999;13:464–75.

    Article  CAS  PubMed  Google Scholar 

  22. Gnarra JR, Tory K, Weng Y, et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet. 1994;7(1):85–90.

    Article  CAS  PubMed  Google Scholar 

  23. Sato Y, Yoshizato T, Shiraishi Y, et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet. 2013;45(8):860–7.

    Article  CAS  PubMed  Google Scholar 

  24. Kim JH, Jung CW, Cho YH, et al. Somatic VHL alteration and its impact on prognosis in patients with clear cell renal cell carcinoma. Oncol Rep. 2005;13(5):859–64.

    CAS  PubMed  Google Scholar 

  25. Patard J-J, Fergelot P, Karakiewicz PI, et al. Low CAIX expression and absence of VHL gene mutation are associated with tumor aggressiveness and poor survival of clear cell renal cell carcinoma. Int J Cancer. 2008;123(2):395–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Klatte T, Rao PN, de Martino M, et al. Cytogenetic profile predicts prognosis of patients with clear cell renal cell carcinoma. J Clin Oncol. 2009;27(5):746–53.

    Article  PubMed  Google Scholar 

  27. Kroeger N, Klatte T, Chamie K, et al. Deletions of chromosomes 3p and 14q molecularly subclassify clear cell renal cell carcinoma. Cancer. 2013;119(8):1547–54.

    Article  CAS  PubMed  Google Scholar 

  28. Schraml P, Struckmann K, Hatz F, et al. VHL mutations and their correlation with tumour cell proliferation, microvessel density, and patient prognosis in clear cell renal cell carcinoma. J Pathol. 2002;196(2):186–93.

    Article  CAS  PubMed  Google Scholar 

  29. Gulati S, Martinez P, Joshi T, et al. Systematic evaluation of the prognostic impact and intratumour heterogeneity of clear cell renal cell carcinoma biomarkers. Eur Urol. 2014;66(5):936–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ivanov S, Liao SY, Ivanova A, et al. Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol. 2001;158(3):905–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. van Kuijk SJA, Yaromina A, Houben R, Niemans R, Lambin P, Dubois LJ. Prognostic significance of carbonic anhydrase IX expression in cancer patients: a meta-analysis. Front Oncol. 2016;6:69.

    PubMed  PubMed Central  Google Scholar 

  32. Bismar TA, Bianco FJ, Zhang H, et al. Quantification of G250 mRNA expression in renal epithelial neoplasms by real-time reverse transcription-PCR of dissected tissue from paraffin sections. Pathology. 2003;35(6):513–7.

    Article  CAS  PubMed  Google Scholar 

  33. Xu C, Lo A, Yammanuru A, et al. Unique biological properties of catalytic domain directed human anti-CAIX antibodies discovered through phage-display technology. PLoS One. 2010;5(3):–e9625.

    Google Scholar 

  34. Bui MHT, Seligson D, Han K-R, et al. Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clin Cancer Res. 2003;9(2):802–11.

    CAS  PubMed  Google Scholar 

  35. Zhao Z, Liao G, Li Y, Zhou S, Zou H, Fernando S. Prognostic value of carbonic anhydrase IX immunohistochemical expression in renal cell carcinoma: a meta-analysis of the literature. PLoS One. 2014;9(11):–e114096.

    Google Scholar 

  36. Zerati M, Leite KRM, Pontes-Junior J, et al. Carbonic anhydrase IX is not a predictor of outcomes in non-metastatic clear cell renal cell carcinoma – a digital analysis of tissue microarray. Int Braz J Urol. 2010;39(4):484–92.

    Article  Google Scholar 

  37. Chamie K, Klöpfer P, Bevan P, et al. Carbonic anhydrase-IX score is a novel biomarker that predicts recurrence and survival for high-risk, nonmetastatic renal cell carcinoma: Data from the phase III ARISER clinical trial. Urol Oncol. 2015;33(5):204.e25–33.

    Article  CAS  Google Scholar 

  38. Atkins M, Regan M, McDermott D, et al. Carbonic anhydrase IX expression predicts outcome of interleukin 2 therapy for renal cancer. Clin Cancer Res. 2005;11(10):3714–21.

    Article  CAS  PubMed  Google Scholar 

  39. de Martino M, Klatte T, Seligson DB, et al. CA9 gene: single nucleotide polymorphism predicts metastatic renal cell carcinoma prognosis. J Urol. 2009;182(2):728–34.

    Article  CAS  PubMed  Google Scholar 

  40. Dudek AZ, Yee RT, Manivel JC, Isaksson R, Yee HO. Carbonic anhydrase IX expression is associated with improved outcome of high-dose interleukin-2 therapy for metastatic renal cell carcinoma. Anticancer Res. 2010;30(3):987–92.

    CAS  PubMed  Google Scholar 

  41. McDermott DF, Cheng S-C, Signoretti S, et al. The high-dose aldesleukin “select” trial: a trial to prospectively validate predictive models of response to treatment in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2015;21(3):561–8.

    Article  CAS  PubMed  Google Scholar 

  42. Choueiri TK, Cheng S, Qu AQ, Pastorek J, Atkins MB, Signoretti S. Carbonic anhydrase IX as a potential biomarker of efficacy in metastatic clear-cell renal cell carcinoma patients receiving sorafenib or placebo: Analysis from the treatment approaches in renal cancer global evaluation trial (TARGET). Urol Oncol. 2013;31(8):1788–93.

    Article  CAS  PubMed  Google Scholar 

  43. Atkins MB, Hidalgo M, Stadler WM, et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol. 2004;22(5):909–18.

    Article  CAS  PubMed  Google Scholar 

  44. Dornbusch J, Zacharis A, Meinhardt M, et al. Analyses of potential predictive markers and survival data for a response to sunitinib in patients with metastatic renal cell carcinoma. PLoS One. 2013;8(9):e76386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brugarolas J. Molecular genetics of clear-cell renal cell carcinoma. J Clin Oncol. 2014;32(18):1968–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Varela I, Tarpey P, Raine K, et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011;469(7331):539–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Peña-Llopis S, Christie A, Xie X-J, Brugarolas J. Cooperation and antagonism among cancer genes: the renal cancer paradigm. Cancer Res. 2013;73(14):4173–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kapur P, Peña-Llopis S, Christie A, et al. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol. 2013;14(2):159–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hakimi AA, Ostrovnaya I, Reva B, et al. Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin Cancer Res. 2013;19(12):3259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. da Costa WH, Rezende M, Carneiro FC, et al. Polybromo-1 (PBRM1), a SWI/SNF complex subunit is a prognostic marker in clear cell renal cell carcinoma. BJU Int. 2014;113(5b):E157–63.

    Article  CAS  PubMed  Google Scholar 

  51. Joseph RW, Kapur P, Serie DJ, et al. Loss of BAP1 protein expression is an independent marker of poor prognosis in patients with low-risk clear cell renal cell carcinoma. Cancer. 2014;120(7):1059–67.

    Article  CAS  PubMed  Google Scholar 

  52. Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Razafinjatovo CF, Stiehl D, Deininger E, Rechsteiner M, Moch H, Schraml P. VHL missense mutations in the p53 binding domain show different effects on p53 signaling and HIFα degradation in clear cell renal cell carcinoma. Oncotarget. 2017;8(6):10199–212.

    Article  PubMed  Google Scholar 

  54. Noon AP, Vlatković N, Polański R, et al. p53 and MDM2 in renal cell carcinoma: biomarkers for disease progression and future therapeutic targets? Cancer. 2010;116(4):780–90.

    Article  CAS  PubMed  Google Scholar 

  55. Ricketts CJ, De Cubas AA, Fan H, et al. The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 2018;23(1):313–26. e315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kankaya D, Kiremitci S, Tulunay O, Baltaci S. Gelsolin, NF-κB, and p53 expression in clear cell renal cell carcinoma: Impact on outcome. Pathol Res Pract. 2015;211(7):505–12.

    Article  CAS  PubMed  Google Scholar 

  57. Godlewski J, Krazinski BE, Kowalczyk AE, et al. Expression and prognostic significance of EP300, TP53 and BAX in clear cell renal cell carcinoma. Anticancer Res. 2017;37(6):2927–37.

    CAS  PubMed  Google Scholar 

  58. Schullerus D, Herbers J, Chudek J, Kanamaru H, Kovacs G. Loss of heterozygosity at chromosomes 8p, 9p, and 14q is associated with stage and grade of non-papillary renal cell carcinomas. J Pathol. 1997;183(2):151–5.

    Article  CAS  PubMed  Google Scholar 

  59. Presti JC, Wilhelm M, Reuter V, Russo P, Motzer R, Waldman F. Allelic loss on chromosomes 8 and 9 correlates with clinical outcome in locally advanced clear cell carcinoma of the kidney. J Urol. 2002;167(3):1464–8.

    Article  CAS  PubMed  Google Scholar 

  60. La Rochelle J, Klatte T, Dastane A, et al. Chromosome 9p deletions identify an aggressive phenotype of clear cell renal cell carcinoma. Cancer. 2010;116(20):4696–702.

    Article  PubMed  Google Scholar 

  61. Brunelli M, Eccher A, Gobbo S, et al. Loss of chromosome 9p is an independent prognostic factor in patients with clear cell renal cell carcinoma. Mod Pathol. 2008;21(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  62. de Oliveira D, Dall’Oglio MF, Reis ST, et al. Chromosome 9p deletions are an independent predictor of tumor progression following nephrectomy in patients with localized clear cell renal cell carcinoma. Urol Oncol. 2014;32(5):601–6.

    Article  CAS  PubMed  Google Scholar 

  63. Li X, Tan X, Yu Y, et al. D9S168 microsatellite alteration predicts a poor prognosis in patients with clear cell renal cell carcinoma and correlates with the down-regulation of protein tyrosine phosphatase receptor delta. Cancer. 2011;117(18):4201–11.

    Article  CAS  PubMed  Google Scholar 

  64. El-Mokadem I, Kidd T, Pratt N, et al. Tumour suppressor gene (CDKNA2) status on chromosome 9p in resected renal tissue improves prognosis of localised kidney cancer. Oncotarget. 2016;7(45):73045–54.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Turajlic S, Xu H, Litchfield K, et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell. 2018;173(3):581–94. e512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu SQ, Hafez GR, Xing W, Newton M, Chen XR, Messing E. The correlation between the loss of chromosome 14q with histologic tumor grade, pathologic stage, and outcome of patients with nonpapillary renal cell carcinoma. Cancer. 1996;77(6):1154–60.

    Article  CAS  PubMed  Google Scholar 

  67. Glukhova L, Angevin E, Lavialle C, et al. Patterns of specific genomic alterations associated with poor prognosis in high-grade renal cell carcinomas. Cancer Genet Cytogenet. 2001;130(2):105–10.

    Article  CAS  PubMed  Google Scholar 

  68. Alimov A, Sundelin B, Wang N, Larsson C, Bergerheim U. Loss of 14q31-q32.2 in renal cell carcinoma is associated with high malignancy grade and poor survival. Int J Oncol. 2004;25(1):179–85.

    CAS  PubMed  Google Scholar 

  69. Kaku H, Ito S, Ebara S, et al. Positive correlation between allelic loss at chromosome 14q24-31 and poor prognosis of patients with renal cell carcinoma. Urology. 2004;64(1):176–81.

    Article  PubMed  Google Scholar 

  70. Monzon FA, Alvarez K, Peterson L, et al. Chromosome 14q loss defines a molecular subtype of clear-cell renal cell carcinoma associated with poor prognosis. Mod Pathol. 2011;24(11):1470–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tang S-W, Chang W-H, Su Y-C, et al. MYC pathway is activated in clear cell renal cell carcinoma and essential for proliferation of clear cell renal cell carcinoma cells. Cancer Lett. 2009;273(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  72. Ribeiro FR, Jerónimo C, Henrique R, et al. 8q gain is an independent predictor of poor survival in diagnostic needle biopsies from prostate cancer suspects. Clin Cancer Res. 2006;12(13):3961–70.

    Article  CAS  PubMed  Google Scholar 

  73. El Gammal AT, Bruchmann M, Zustin J, et al. Chromosome 8p deletions and 8q gains are associated with tumor progression and poor prognosis in prostate cancer. Clin Cancer Res. 2010;16(1):56–64.

    Article  CAS  PubMed  Google Scholar 

  74. Schleicher C, Poremba C, Wolters H, Schäfer K-L, Senninger N, Colombo-Benkmann M. Gain of chromosome 8q: a potential prognostic marker in resectable adenocarcinoma of the pancreas? Ann Surg Oncol. 2007;14(4):1327–35.

    Article  PubMed  Google Scholar 

  75. Weber RG, Pietsch T, von Schweinitz D, Lichter P. Characterization of genomic alterations in hepatoblastomas. A role for gains on chromosomes 8q and 20 as predictors of poor outcome. Am J Pathol. 2000;157(2):571–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Klatte T, Kroeger N, Rampersaud EN, et al. Gain of chromosome 8q is associated with metastases and poor survival of patients with clear cell renal cell carcinoma. Cancer. 2012;118(23):5777–82.

    Article  CAS  PubMed  Google Scholar 

  77. Mehrazin R, Dulaimi E, Uzzo RG, et al. The correlation between gain of chromosome 8q and survival in patients with clear and papillary renal cell carcinoma. Ther Adv Urol. 2018;10(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  78. Delahunt B, Eble JN. Papillary renal cell carcinoma: a clinicopathologic and immunohistochemical study of 105 tumors. Mod Pathol. 1997;10(6):537–44.

    CAS  PubMed  Google Scholar 

  79. Cancer Genome Atlas Research Network WM, Linehan WM, Spellman PT, et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N Engl J Med. 2016;374(2):135–45.

    Article  CAS  Google Scholar 

  80. Zbar B, Tory K, Merino M, et al. Hereditary papillary renal cell carcinoma. J Urol. 1994;151(3):561–6.

    Article  CAS  PubMed  Google Scholar 

  81. Durinck S, Stawiski EW, Pavia-Jimenez A, et al. Spectrum of diverse genomic alterations define non-clear cell renal carcinoma subtypes. Nat Genet. 2015;47(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  82. Schmidt L, Junker K, Nakaigawa N, et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene. 1999;18(14):2343–50.

    Article  CAS  PubMed  Google Scholar 

  83. Launonen V, Vierimaa O, Kiuru M, et al. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc Natl Acad Sci U S A. 2001;98(6):3387–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Grubb RL 3rd, Franks ME, Toro J, et al. Hereditary leiomyomatosis and renal cell cancer: a syndrome associated with an aggressive form of inherited renal cancer. J Urol. 2007;177(6):2074–9; discussion 2079–80.

    Article  CAS  PubMed  Google Scholar 

  85. Tomlinson IP, Alam NA, Rowan AJ, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet. 2002;30(4):406–10.

    Article  CAS  PubMed  Google Scholar 

  86. Sudarshan S, Sourbier C, Kong HS, et al. Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1alpha stabilization by glucose-dependent generation of reactive oxygen species. Mol Cell Biol. 2009;29(15):4080–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ooi A, Wong JC, Petillo D, et al. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell. 2011;20(4):511–23.

    Article  CAS  PubMed  Google Scholar 

  88. Ooi A, Dykema K, Ansari A, et al. CUL3 and NRF2 mutations confer an NRF2 activation phenotype in a sporadic form of papillary renal cell carcinoma. Cancer Res. 2013;73(7):2044–51.

    Article  CAS  PubMed  Google Scholar 

  89. Finley DS, Pantuck AJ, Belldegrun AS. Tumor biology and prognostic factors in renal cell carcinoma. Oncologist. 2011;16(Suppl 2):4–13.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kovacs G. Molecular cytogenetics of renal cell tumors. Adv Cancer Res. 1993;62:89–124.

    Article  CAS  PubMed  Google Scholar 

  91. Antonelli A, Tardanico R, Balzarini P, et al. Cytogenetic features, clinical significance and prognostic impact of type 1 and type 2 papillary renal cell carcinoma. Cancer Genet Cytogenet. 2010;199(2):128–33.

    Article  CAS  PubMed  Google Scholar 

  92. Klatte T, Pantuck AJ, Said JW, et al. Cytogenetic and molecular tumor profiling for type 1 and type 2 papillary renal cell carcinoma. Clin Cancer Res. 2009;15(4):1162–9.

    Article  CAS  PubMed  Google Scholar 

  93. Kovacs G, Akhtar M, Beckwith BJ, et al. The Heidelberg classification of renal cell tumours. J Pathol. 1997;183(2):131–3.

    Article  CAS  PubMed  Google Scholar 

  94. Cheville JC, Lohse CM, Zincke H, Weaver AL, Blute ML. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am J Surg Pathol. 2003;27(5):612–24.

    Article  PubMed  Google Scholar 

  95. Rathmell KW, Chen F, Creighton CJ. Genomics of chromophobe renal cell carcinoma: implications from a rare tumor for pan-cancer studies. Oncoscience. 2015;2(2):81–90. Published 2015 Feb 20. https://doi.org/10.18632/oncoscience.130.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Pavlovich CP, Walther MM, Eyler RA, et al. Renal tumors in the Birt-Hogg-Dube syndrome. Am J Surg Pathol. 2002;26(12):1542–52.

    Article  PubMed  Google Scholar 

  97. Habib SL, Al-Obaidi NY, Nowacki M, et al. Is mTOR inhibitor good enough for treatment all tumors in TSC patients? J Cancer. 2016;7(12):1621–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nagy A, Zoubakov D, Stupar Z, Kovacs G. Lack of mutation of the folliculin gene in sporadic chromophobe renal cell carcinoma and renal oncocytoma. Int J Cancer. 2004;109(3):472–5.

    Article  CAS  PubMed  Google Scholar 

  99. Davis CF, Ricketts CJ, Wang M, et al. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell. 2014;26(3):319–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011;12(4):R41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Heidenreich B, Rachakonda PS, Hemminki K, Kumar R. TERT promoter mutations in cancer development. Curr Opin Genet Dev. 2014;24:30–7.

    Article  CAS  PubMed  Google Scholar 

  102. Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen F, Zhang Y, Senbabaoglu Y, et al. Multilevel genomics-based taxonomy of renal cell carcinoma. Cell Rep. 2016;14(10):2476–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Larman TC, DePalma SR, Hadjipanayis AG, et al. Spectrum of somatic mitochondrial mutations in five cancers. Proc Natl Acad Sci U S A. 2012;109(35):14087–91.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Saneto RP. Genetics of mitochondrial disease. Adv Genet. 2017;98:63–116.

    Article  CAS  PubMed  Google Scholar 

  106. Lyons YA, Wu SY, Overwijk WW, Baggerly KA, Sood AK. Immune cell profiling in cancer: molecular approaches to cell-specific identification. NPJ Precis Oncol. 2017;1(1):26.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Pantuck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghafouri, S., Johnson, D.C., Kelly, K., Pantuck, A., Drakaki, A. (2020). Molecular Biology and Genetics of Renal Cell Carcinoma. In: Libertino, J., Gee, J. (eds) Renal Cancer. Springer, Cham. https://doi.org/10.1007/978-3-030-24378-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24378-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24377-7

  • Online ISBN: 978-3-030-24378-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics