Skip to main content

Use of Semiochemical-Based Strategies to Enhance Biological Control

  • Chapter
  • First Online:
Natural Enemies of Insect Pests in Neotropical Agroecosystems

Abstract

It has been long known that natural enemies use chemical signals of multiple origin sources in host/prey finding. These semiochemicals are derived from host/prey and its subproducts (known as kairomones) or host/prey-plant complex, such as herbivore-induced plant volatiles (HIPVs). Strategies can exploit those chemicals, especially the volatiles as host/prey pheromones and HIPVs, to recruit and retain natural enemies in crops or optimize natural enemy foraging efficiency. Although far less studied, natural enemy pheromones can also be explored in tactics to enhance biological control efficiency. Several studies have shown that semiochemical-based tactics improve conservation and/or augmented biological control. In this chapter, I reviewed the main semiochemical-based practices to improve biological control in the literature and critically discussed their advantages and drawbacks. Given the vast literature on natural enemy behavior to host/prey and plant odors, I gave special attention to practical studies conducted in greenhouses or field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afsheen S, Wang X, Li R et al (2008) Differential attraction of parasitoids in relation to specificity of kairomones from herbivores and their by-products. Insect Sci 15(5):381ā€“397

    ArticleĀ  Google ScholarĀ 

  • Abassi SA, Birkett MA, Pettersson J etĀ al (2000) Response of the seven-spot ladybird to an aphid alarm pheromone and an alarm pheromone inhibitor is mediated by paired olfactory cells. J Chem Ecol 26:1765ā€“1771

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Aldrich JR, Cantelo WW (1999) Suppression of Colorado potato beetle infestation by pheromone-mediated augmentation of the predatory spined soldier bug, Podisus maculiventris (Say) (Heteroptera: Pentatomidae). Agric For Entomol 1:209ā€“217

    ArticleĀ  Google ScholarĀ 

  • Allison JD, Hare JD (2009) Learned and naĆÆve natural enemy responses and the interpretation of volatile organic compounds as cues or signals. New Phytol 184:768ā€“782

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Alim MA, Lim, UT (2011) Refrigerated eggs of Riptortus pedestris (Hemiptera: Alydidae) added to aggregation pheromone traps increase field parasitism in soybean. J Econ Entomol 104:1833ā€“1839

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Babikova Z, Gilbert L, Bruce T et al (2014) Arbuscular mycorrhizal fungi and aphids interact by changing host plant quality and volatile emission. Funct Ecol 28:375ā€“385

    ArticleĀ  Google ScholarĀ 

  • Battaglia D, Poppy G, Powell W et al (2000) Physical and chemical cues influencing the oviposition behaviour of Aphidius ervi. Entomol Exp Appl 94:219ā€“227

    ArticleĀ  Google ScholarĀ 

  • Beevers M, Lewis WJ, Gross HR, Nordlund DA (1981) Kairomones and their use for management of entomophagous insects: X. Laboratory Studies on Manipulation of Host-Finding Behavior of Trichogramma pretiosum Riley with a Kairomone Extracted from Heliothis zea (Boddie) Moth Scales. J Chem Ecol 7(3):635ā€“648

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bin F, Vinson SB, Strand MR et al (1993) Source of an egg kairomone for Trissolcus basalis, a parasitoid of Nezara viridula. Physiol Entomol 18:7ā€“15

    ArticleĀ  Google ScholarĀ 

  • Bruce TJA, Aradottir GI, Smart LE et al (2015) The first crop plant genetically engineered to release an insect pheromone for defence. Sci Rep 5:11183

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Chen YH, Gols R, Benrey B (2015) Crop domestication and its impact on naturally selected trophic interactions. Annu Rev Entomol 60:35ā€“58

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Crock J, Wildung M, Croteau R (1997) Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-beta-farnesene. Proc Natl Acad Sci USA 94:12833ā€“12838

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • De Boer JG, Dicke M (2004) The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. J Chem Ecol 30:255ā€“271

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • De Moraes CM, Lewis WJ, Pare PW et al (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570ā€“573

    ArticleĀ  Google ScholarĀ 

  • Dicke M, Van Beek TA, Posthumus MA et al (1990a) Isolation and identification of volatile kairomone that affects acarine predator prey interactions Involvement of host plant in its production. J Chem Ecol 16:381ā€“396

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dicke M, Sabelis MW, Takabayashi J etĀ al (1990b) Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application in pest control. J Chem Ecol 16:3091ā€“3118

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dicke M, Sabelis MW (1988) Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? Func Ecol 2:131ā€“139

    ArticleĀ  Google ScholarĀ 

  • Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17:250ā€“259

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Erb M, Veyrat N, Robert CAM et al (2015) Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun 6:6273

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Farmer EE, Johnson RR, Ryan CA (1992) Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic Acid. Plant Physiol 98:995ā€“1002

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Fatouros NE, Huigens ME, van Loon JJA et al (2005) Butterfly anti-aphrodisiac lures parasitic wasps. Nature 433:704ā€“704

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Frost CJ, Mescher MC, Dervinis C et al (2008) Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis -3-hexenyl acetate. New Phytol 180:722ā€“734

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Giunti G, Canale A, Messing RH et al (2015) Parasitoid learning: current knowledge and implications for biological control. Biol Control 90:208ā€“219

    ArticleĀ  Google ScholarĀ 

  • GouinguenĆ© SP, Turlings TCJ (2002) The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol 129:1296ā€“1307

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Gross HR, Lewis WJ, Jones RL, Nordlund DA (1975) Kairomones and their use for management of entomophagous insects. III. Stimulation of Trichograrnma achaeae, T. pretiosum, and Microplitis croceipes with host-seeking stimuli at time of release to improve their efficiency. J Chem Ecol 1(4):431ā€“438

    ArticleĀ  Google ScholarĀ 

  • Halitschke R, Stenberg JA, Kessler D et al (2007) Shared signals ā€“ā€˜alarm callsā€™ from plants increase apparency to herbivores and their enemies in nature. Ecol Lett 1(1):24ā€“34

    Google ScholarĀ 

  • Hardie J, Hick AJ, Hƶller C et al (1994) The responses of Praon spp. parasitoids to aphid sex pheromone components in the field. Entomol Exp Appl 71:95ā€“99

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hatano E, Kunert G, Michaud JP, Weisser WW (2008) Chemical cues mediating aphid location by natural enemies. Eur J Entomol 105:797ā€“806

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15:176ā€“184

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • James DG (2003) Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Environ Entomol 32:977ā€“982

    ArticleĀ  CASĀ  Google ScholarĀ 

  • James DG (2005) Further field evaluation of synthetic herbivore-induced plan volatiles as attractants for beneficial insects. J Chem Ecol 31:481ā€“495

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jumean Z, Jones E, Gries G (2009) Does aggregation behavior of codling moth larvae, Cydia pomonella, increase the risk of parasitism by Mastrus ridibundus? Biol Control 49:254ā€“258

    ArticleĀ  Google ScholarĀ 

  • Kalaivani K, Kalaiselvi MM, Senthil-Nathan S (2016) Effect of methyl salicylate (MeSA), an elicitor on growth, physiology and pathology of resistant and susceptible rice varieties. Sci Rep 6:34498

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kaplan I (2012) Attracting carnivorous arthropods with plant volatiles: The future of biocontrol or playing with fire? Biol Control 60:77ā€“89

    ArticleĀ  Google ScholarĀ 

  • Kaplan I, Lewis D (2015) What happens when crops are turned on? Simulating constitutive volatiles for tritrophic pest suppression across an agricultural landscape. Pest Manag Sci 71:139ā€“150

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Khan ZR, James DG, Midega CAO, Pickett JA (2008) Chemical ecology and conservation biological control. Biol Control 45:210ā€“224

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kƶllner TG, Held M, Lenk C et al (2008) A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20:482ā€“494

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373ā€“391

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Leal WS, Higuchi H, Mizutani N et al (1995) Multifunctional communication in Riptortus clavatus (Heteroptera: Alydidae): conspecific nymphs and egg parasitoid Ooencyrtus nezarae use the same adult attractant pheromone as chemical cue. J Chem Ecol 21:973ā€“985

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Leroy PD, Sabri A, Heuskin S et al (2011) Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nat Commun 2:348

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lewis WJ, Jones RL, Nordlund DA, Gross HR (1975) Kairomones and their use for management of entomophagous insects: II. Mechanisms causing increase in rate of parasitization by Trichogramma spp. J Chem Ecol 1:349ā€“360

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lewis WJ, Jones RL, Sparks AN (1972) A host-seeking stimulant for the egg parasite Trichogramma evanescens: its source and a demonstration of its laboratory and field activity. Ann Entomol Soc Am 65:1087ā€“1089

    ArticleĀ  Google ScholarĀ 

  • Lewis WJ, Nordlund DA, Gueldner RC et al (1982) Kairomones and their use for management of entomophagous insects. XIII. Kairomonal Activity for Trichogramma spp. of Abdominal Tips, Excretion, and a Synthetic Sex Pheromone Blend of Heliothis zea (Boddie) Moths. J Chem Ecol 8(10):1323ā€“1331

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Li X, Garvey M, Kaplan I et al (2018) Domestication of tomato has reduced the attraction of herbivore natural enemies to pest-damaged plants. Agric For Entomol 20:390ā€“401

    ArticleĀ  Google ScholarĀ 

  • Liu J, Zhu J, Zhang P et al (2017) Silicon supplementation alters the composition of herbivore induced plant volatiles and enhances attraction of parasitoids to infested rice plants. Front Plant Sci 8:1ā€“8

    Google ScholarĀ 

  • Lou Y-G, Du M-H, Turlings TCJ et al (2005) Exogenous application of jasmonic acid induces volatile emissions in rice and enhances parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae. J Chem Ecol 31:1985ā€“2002

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • McCormick AC (2016) Can plant-natural enemy communication withstand disruption by biotic and abiotic factors? Ecol Evol 6:8569ā€“8582

    ArticleĀ  Google ScholarĀ 

  • MagalhĆ£es DM, Fidelis IAS, Borges M et al (2019) Anthonomus grandis aggregation pheromone induces cotton indirect defence and attracts the parasitic wasp Bracon vulgaris. J Exp Bot 70(6):1891ā€“1901. https://doi.org/10.1093/jxb/erz040

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Matthes MC, Bruce TJA, Ton J etĀ al (2010) The transcriptome of cis-jasmone-induced resistance in Arabidopsis thaliana and its role in indirect defence. Planta 232:1163ā€“1180

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mattiacci L, Dicke M (1995) The parasitoid Cotesia glomerata (Hymenoptera: Braconidae) discriminates between first and fifth larval instars of its host Pieris brassicae, on the basis of contact cues from frass, silk, and herbivore-damaged leaf tissue. J Insect Behav 8:485ā€“498

    ArticleĀ  Google ScholarĀ 

  • Mattiacci L, Vinson SB, Williams HJ et al (1993) A long-range attractant kairomone for egg parasitoid Trissolcus basalis, isolated from defensive secretion of its host, Nezara viridula. J Chem Ecol 19:1167ā€“1181

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mithofer A, Boland W (2008) Recognition of herbivory-associated molecular patterns. Plant Physiol 146:825ā€“831

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Mizutani N (2006) Pheromones of male stink bugs and their attractiveness to their parasitoids. Japanese J Appl Entomol Zool 50:87ā€“99

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Moraes MCB, Laumann RA, Pareja M et al (2009) Attraction of the stink bug egg parasitoid Telenomus podisi to defence signals from soybean activated by treatment with cis -jasmone. Entomol Exp Appl 131:178ā€“188

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mori K, Tashiro T (2004) Useful reactions in modern pheromone synthesis. Curr Org Synth 1:11ā€“29

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mumm R, Dicke M (2010) Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense the present review is one in the special series of reviews on animalā€“plant interactions. Can J Zool 88:628ā€“667

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mansour R, Suma P, Mazzeo G, Russo A et al. (2010). Using a kairomone-based attracting system to enhance biological control of mealybugs (Hemiptera: Pseudococcidae) by Anagyrus sp. near pseudococci (Hymenoptera: Encyrtidae) in Sicilian vineyards. J Entomol Acarol Res 42:161ā€“170

    ArticleĀ  Google ScholarĀ 

  • Nakashima Y, Ida TY, Powell W et al (2016) Field evaluation of synthetic aphid sex pheromone in enhancing suppression of aphid abundance by their natural enemies. BioControl 61:485ā€“496

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Nordlund DA, Lewis WJ, Todd JW, Chalfant RB (1977) Kairomones and their use for management of entomophagous insects. J Chem Ecol 3:513ā€“518

    ArticleĀ  Google ScholarĀ 

  • Nordlund DA, Strand MR, Lewis WJ, Vinson SB (1987) Role of kairomones from host accessory gland secretion in host recognition by Telenomus remus and Trichogramma pretiosum, with partial characterization. Entomol Exp Appl 44:37ā€“43

    ArticleĀ  Google ScholarĀ 

  • Onodera J, Matsuyama S, Suzuki T, Fujii K (2002) Host-recognizing kairomones for parasitic wasp, Anisopteromalus calandrae, from larvae of azuki bean weevil, Callosobruchus chinensis. J Chem Ecol 28:1209ā€“1220

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Orre Gordon GUS, Wratten SD, Jonsson M et al (2013) ā€˜Attract and rewardā€™: combining a herbivore-induced plant volatile with floral resource supplementationĀ ā€“ Multi-trophic level effects. Biol Control 64:106ā€“115

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pangesti N, Weldegergis BT, Langendorf B et al (2015) Rhizobacterial colonization of roots modulates plant volatile emission and enhances the attraction of a parasitoid wasp to host-infested plants. Oecologia 178:1169ā€“1180

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Pascal LD, Raki A, Sabrine A et al (2014) Aphid honeydew: an arrestant and a contact kairomone for Episyrphus balteatus (Diptera: Syrphidae) larvae and adults. Eur J Entomol 111:237ā€“242

    ArticleĀ  Google ScholarĀ 

  • PeƱaflor MFGV, Bento JMS (2013) Herbivore-induced plant volatiles to enhance biological control in agriculture. Neotrop Entomol 42:331ā€“343

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Pickett JA, Griffiths DC (1980) Composition of aphid alarm pheromones. J Chem Ecol 6:349ā€“360

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pompanon F, De Schepper B, Mourer Y et al (1997) Evidence for a substrate-borne sex pheromone in the parasitoid wasp Trichogramma brassicae. J Chem Ecol 23:1349ā€“1360

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rasmann S, Bennett A, Biere A et al (2017) Root symbionts: powerful drivers of plant above- and belowground indirect defenses. Insect Sci 24:947ā€“960

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rasmann S, Kƶllner TG, Degenhardt J etĀ al (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732ā€“737

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Reddy GVP, Holopainen JK, Guerrero A (2002) Olfactory responses of Plutella xylostella natural enemies to host pheromone, larval frass, and green leaf cabbage volatiles. J Chem Ecol 28:131ā€“143

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Reymond P (2013) Perception, signaling and molecular basis of oviposition-mediated plant responses. Planta 238:247ā€“258

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Robert CAM, Erb M, Hiltpold I et al (2013) Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field. Plant Biotechnol J 11:628ā€“639

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rodriguez-Saona C, Kaplan I, Braasch J etĀ al (2011) Field responses of predaceous arthropods to methyl salicylate: a meta-analysis and case study in cranberries. Biol Control 59:294ā€“303

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rowen E, Gutensohn M, Dudareva N, Kaplan I (2017) Carnivore attractant or plant elicitor? Multifunctional roles of methyl salicylate lures in tomato defense. J Chem Ecol 43:573ā€“585

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ruther J, Homann M, Steidle JLM (2000) Female-derived sex pheromone mediates courtship behaviour in the parasitoid Lariophagus distinguendus. Entomol Exp Appl 96:265ā€“274

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rutledge CE (1996) A survey of identified kairomones and synomones used by insect parasitoids to locate and accept their hosts. Chemoecology 7:121ā€“131

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Salamanca J, Souza B, Rodriguez-Saona C (2018) Cascading effects of combining synthetic herbivore-induced plant volatiles with companion plants to manipulate natural enemies in an agro-ecosystem. Pest Manag Sci 74:2133ā€“2145

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Santā€™Ana J, Bruni R, Abdul-Baki AA, Aldrich JR (1997) Pheromone-induced movement of nymphs of the predator, Podisus maculiventris (Heteroptera: Pentatomidae). Biol Control 10:123ā€“128

    ArticleĀ  Google ScholarĀ 

  • Simpson M, Gurr GM, Simmons AT et al (2011) Field evaluation of the ā€˜attract and rewardā€™ biological control approach in vineyards. Ann Appl Biol 159:69ā€“78

    ArticleĀ  Google ScholarĀ 

  • Smith JL, De Moraes CM, Mescher MC (2009) Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag Sci 65:497ā€“503

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Snoeren TAL, Mumm R, Poelman EH et al (2010) The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum. J Chem Ecol 36:479ā€“489

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sobhy IS, Erb M, Lou Y, Turlings TCJ (2014) The prospect of applying chemical elicitors and plant strengtheners to enhance the biological control of crop pests. Philos Trans R Soc B Biol Sci 369:20120283

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Stout MJ, Zehnder GW, Baur ME (2002) Potential for the use of elicitors of plant resistance in arthropod management programs. Arch Insect Biochem Physiol 51:222ā€“235

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Takemoto H, Powell W, Pickett J etĀ al (2012) Two-step learning involved in acquiring olfactory preferences for plant volatiles by parasitic wasps. Anim Behav 83:1491ā€“1496

    ArticleĀ  Google ScholarĀ 

  • Tamiru A, Bruce TJ, Woodcock CM et al (2011) Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecol Lett 14:1075ā€“1083

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Tamiru A, Khan ZR, Bruce TJ (2015) New directions for improving crop resistance to insects by breeding for egg induced defence. Curr Opin Insect Sci 9:51ā€“55

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Thaler JS (2002) Effect of jasmonate-induced plant responses on the natural enemies of herbivores. J Anim Ecol 71:141ā€“150

    ArticleĀ  Google ScholarĀ 

  • Thaler JS (1999) Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399:686ā€“688

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Thibout E (2005) Role of caterpillar silk thread in location of host pupae by the parasitoid Diadromus pulchellus. J Insect Behav 18:817ā€“826

    ArticleĀ  Google ScholarĀ 

  • Turlings TCJ, Erb M (2018) Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu Rev Entomol 63:433ā€“452

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Turlings TCJ, Tumlinson JH, Heath RR et al (1991) Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. J Chem Ecol 17:2235ā€“2251

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Usha Rani P, Indu Kumari S, Sriramakrishna T, Ratna Sudhakar T (2006) Kairomones extracted from rice yellow stem borer and their influence on egg parasitization by Trichogramma japonicum Ashmead. J Chem Ecol 33:59ā€“73

    ArticleĀ  CASĀ  Google ScholarĀ 

  • von MĆ©rey G, Veyrat N, Mahuku G et al (2011) Dispensing synthetic green leaf volatiles in maize fields increases the release of sesquiterpenes by the plants, but has little effect on the attraction of pest and beneficial insects. Phytochemistry 72:1838ā€“1847

    ArticleĀ  CASĀ  Google ScholarĀ 

  • von MĆ©rey GE, Veyrat N, De Lange E et al (2012) Minor effects of two elicitors of insect and pathogen resistance on volatile emissions and parasitism of Spodoptera frugiperda in Mexican maize fields. Biol Control 60:7ā€“15

    ArticleĀ  Google ScholarĀ 

  • Vet MEL, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141ā€“172

    ArticleĀ  Google ScholarĀ 

  • Vieira CR, Moraes MCB, Borges M et al (2013) cis-Jasmone indirect action on egg parasitoids (Hymenoptera: Scelionidae) and its application in biological control of soybean stink bugs (Hemiptera: Pentatomidae). Biol Control 64:75ā€“82

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Vinson SB (1984) Parasitoid-host relationship. In: Chemical ecology of insects. Springer US, Boston, MA, pp 205ā€“233

    ChapterĀ  Google ScholarĀ 

  • Vinson SB (1976) Host selection by insect parasitoids. Annu Rev Entomol 21:109ā€“133

    ArticleĀ  Google ScholarĀ 

  • Vosteen I, Weisser WW, Kunert G (2016) Is there any evidence that aphid alarm pheromones work as prey and host finding kairomones for natural enemies? Ecol Entomol 41:1ā€“12

    ArticleĀ  Google ScholarĀ 

  • Wang S-N, Peng Y, Lu Z-Y et al (2015) Identification and expression analysis of putative chemosensory receptor genes in Microplitis mediator by antennal transcriptome screening. Int J Biol Sci 11:737ā€“751

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • WƤschke N, Meiners T, RostĆ”s M (2013) Foraging strategies of parasitoids in complex chemical environments. In: Chemical Ecology of Insect Parasitoids. Wiley-Blackwell, Chichester, UK, pp 37ā€“63

    ChapterĀ  Google ScholarĀ 

  • Whitfield J (2001) Making crops cry for help. Nature 410:736ā€“737

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wƶlfling M, RostĆ”s M (2009) Parasitoids use chemical footprints to track down caterpillars. Commun Integr Biol 2:353ā€“355

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ye M, Song Y, Long J etĀ al (2013) Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proc Natl Acad Sci 110:E3631ā€“E3639

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Fernanda Gomes Villalba PeƱaflor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

PeƱaflor, M.F.G.V. (2019). Use of Semiochemical-Based Strategies to Enhance Biological Control. In: Souza, B., VƔzquez, L., Marucci, R. (eds) Natural Enemies of Insect Pests in Neotropical Agroecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-24733-1_41

Download citation

Publish with us

Policies and ethics