Skip to main content

Artificial Intelligence and Machine Learning for Future Urban Development

  • Chapter
  • First Online:
Computing and Communication Systems in Urban Development

Abstract

Artificial intelligence methods are extensively utilized greatly as substitutes rather than more classical methods for modeling the environmental frameworks. In this chapter there will be a review of some, and how they are applied in the environment, including examples and concrete references are provided. Moreover, the methods will be case focused reasoning, fuzzy models, rule based frameworks, artificial networks, cellular automata, the swarm intelligence, multi-agents frameworks, reinforcement learning systems, and the hybrid systems. Therefore, city designers and architects allocate much time in gathering data from crucial sources. Increased augmenting of the GIS (Growth information systems) have made is effective in mapping and portraying the data collected in the laboratory, although such tools are restricted due to insufficient of complex data and inference capacities. Moreover, this chapter will state the probable chances of how artificial intelligence and the machine based learning techniques may improve the performance processes of urban planning through the provision of extensive data evaluation and inference capacities. Verifying the claim, some of the machine learning techniques have been utilized which clearly point out the type of urban settings and major streets grouping, centered on how complex semantic and spatial relationships unlike the building geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bethell, T.: The search for artificial intelligence. Am. Spect. 39(6), 26–35 (2006)

    Google Scholar 

  2. Goodwins, R.: The machine that wanted to be a mind. ZDNet News Portal. http://news.zdnet.co.uk/story/0,,s2083911,00.html

  3. Ordonez, V., Berg, T.L.: Learning high-level judgments of urban perception. In: Computer Vision– ECCV 2014, pp. 494–510. Springer, Cham (2014)

    Chapter  Google Scholar 

  4. Turban, E.: Decision Support Systems and Expert Systems. Prentice-Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  5. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Mateo (1993)

    Book  Google Scholar 

  6. Watson, I., Marir, F.: Case-based, reasoning: a review. Knowl. Eng. Rev. 9, 327–354 (1994)

    Article  Google Scholar 

  7. Lee, B.H., Scholz, M., Horn, A.: Constructed wetlands: prediction of performance with case-based reasoning (part B). Environ. Eng. Sci. 23, 332–340 (2006)

    Article  Google Scholar 

  8. Lee, B.H., Scholz, M., Horn, A.: Constructed wetlands: treatment of concentrated storm water runoff (part a). Environ. Eng. Sci. 23, 320–331 (2006)

    Article  Google Scholar 

  9. Hayes-Roth, F.: Rule-based systems. Commun. ACM. 28, 921–932 (1985)

    Article  Google Scholar 

  10. Ng, K.C., Abramson, B.: Uncertainty management in expert systems. IEEE Intell. Syst. 5(2), 29–48 (1990)

    Google Scholar 

  11. Dhar, V., Stein, R.: Intelligent decision support methods. In: The Science of Knowledge Work. Prentice Hall, Upper Saddle River (1997)

    Google Scholar 

  12. Kawano, S., Huynh, V.N., Ryoke, M., Nakamori, Y.: A context-dependent knowledge model for evaluation of regional environment. Environ. Model. Softw. 20, 343–352 (2005)

    Article  Google Scholar 

  13. Janssen, R., Goosen, H., Verhoeven, M.L., Verhoeven, J.T.A., Omtzigt, A.Q.A., Maltby, E.: Decision support for integrated wetland management. Environ. Model. Softw. 20, 215–229 (2005)

    Article  Google Scholar 

  14. Yao, X.: Evolving artificial neural networks. Proc. IEEE. 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  15. Hammerstrom, D.: Working with neural networks. IEEE Spectr. 30(7), 46–53 (1993)

    Article  Google Scholar 

  16. Jain, A.K., Mao, J., Mohiuddin, K.: Artificial neural networks: a tutorial. IEEE Comput. 29, 31–44 (1996)

    Article  Google Scholar 

  17. Santiago, M.S., Rodrigues, V.: Nonlinear aspects of data integration for land-cover classification in a neural network environment. Adv. Space Res. 14, 265–268 (1994)

    Article  Google Scholar 

  18. Metternicht, G., Gonzalez, S.: FUERO: foundations of a fuzzy exploratory model for soil erosion hazard prediction. Environ. Model. Softw. 20, 715–728 (2005)

    Article  Google Scholar 

  19. Buckeles, B.P., Petry, F.E.: Genetic Algorithms. IEEE Computer Society Press, Los Alamitos (1992)

    Google Scholar 

  20. Brown, I.: Modelling future landscape change on coastal floodplains using a rule-based GIS. Environ. Model. Softw. 21, 1479–1490 (2006)

    Article  Google Scholar 

  21. Fuller, R.: Introduction to Neuro-Fuzzy Systems. Physica-Verlag, Heidelberg (2000)

    Book  Google Scholar 

  22. Lesser, V.R.: Multiagent systems: an emerging subdiscipline of AI. ACM Comput. Surv. 27, 340–342 (1995)

    Article  Google Scholar 

  23. Parrott, L., Lacroix, R., Wade, K.M.: Design considerations for the implementation of multi-agent systems in the dairy industry. Comput. Electron. Agric. 38, 79–98 (2003)

    Article  Google Scholar 

  24. Flores-Mendez, R.A.: Towards a standardization of multi-agent system frameworks. Crossroads. 5(4), 18–24 (1999). http://www.acm.org/crossroads/xrds54/multiagent.html

    Article  Google Scholar 

  25. Denby, B., Le Hégarat-Mascle, S.: Swarm intelligence in optimisation problems. Nucl. Instrum. Meth. Phys. Res. Sect. A. 502, 364–368 (2003)

    Article  Google Scholar 

  26. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  27. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B. 26, 29–41 (1996)

    Article  Google Scholar 

  28. Shelokar, P.S., Siarry, P., Jayaraman, V.K., Kulkarni, B.D.: Particle swarm and ant colony algorithms hybridized for improved continuous optimization. Appl. Math. Comput. 188(1), 129–142 (2007)

    Article  MathSciNet  Google Scholar 

  29. Sutton, R., Barto, A.: Reinforcement learning: an introduction. http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html (1998)

    Article  Google Scholar 

  30. Harmon, M.E., Harmon, S.S.: Reinforcement learning: a tutorial. http://www.nbu.bg/cogs/events/2000/Readings/Petrov/rltutorial.pdf (2000)

  31. Kaelbling, L., Littman, M., Moore, A.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)

    Article  Google Scholar 

  32. Gray, A., Kilgour, R.: Frequently asked questions: hybrid systems. http://www.cecs.missouri.edu/~rsun/hybrid-FAQ.html (1997)

  33. El-Yacoubi, S., El-Jai, A., Jacewicz, P., Pausas, J.G.: LUCAS: an original tool for landscape modelling. Environ. Model. Softw. 18, 429–437 (2003)

    Article  Google Scholar 

  34. Kuo, J.T., Wang, Y.Y., Lung, W.S.: A hybrid neural-genetic algorithm for reservoir water quality management. Water Res. 40, 1367–1376 (2006)

    Article  Google Scholar 

  35. Huang, S.H., Zhang, H.C.: Neural-expert hybrid approach for intelligent manufacturing: a survey. Comput. Ind. 26, 107–126 (1995)

    Article  Google Scholar 

  36. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: Proceedings of 11th Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufman, San Mateo (1995)

    Google Scholar 

  37. Kohavi, R., Quinlan, J.R., Will, K., Jan, M.: Decision-tree discovery. In: Handbook of Data Mining and Knowledge Discovery, pp. 267–276. Oxford University Press, New York (2002)

    Google Scholar 

  38. Bouckaert, R.: Bayesian Network Classifiers in Weka. Technical Report. Department of Computer Science, Waikato University, Hamilton (2005)

    Google Scholar 

  39. Kohavi, R.: Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree hybrid. In: Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD), pp. 202–207. AAAI Press, Menlo Park (1996)

    Google Scholar 

  40. Svensson, A.: Arterial Streets for People. Technical Report. Lund University, Department of Technology and Society, Lund (2004)

    Google Scholar 

  41. Yiming, Y.: An evaluation of statistical approaches to text categorization. Inf. Retr. 1(1/2), 69–90 (1999)

    Article  Google Scholar 

  42. Lise, G.: Learning statistical models from relational data. PhD thesis, Stanford University (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haldorai, A., Ramu, A., Murugan, S. (2019). Artificial Intelligence and Machine Learning for Future Urban Development. In: Computing and Communication Systems in Urban Development. Urban Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-26013-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26013-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26012-5

  • Online ISBN: 978-3-030-26013-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics