Skip to main content

A Simple and Exact Algorithm to Solve Linear Problems with \(\ell ^1\)-Based Regularizers

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2018)

Abstract

This paper considers \(\ell ^1\)-based regularized signal estimation that are often used in applications. The estimated signal is obtained as the solution of an optimization problem and the quality of the recovered signal directly depends on the quality of the solver. This paper describes a simple algorithm that computes an exact minimizer of \( \Vert D \cdot \Vert _1\) under the constraints \(A\mathbf {x}=\mathbf {y}\). A comparative evaluation of the algorithm is presented. An illustrative application to real signals of bacterial flagellar motor is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://fr.mathworks.com/matlabcentral/fileexchange/32402-cosamp-and-omp-for-sparse-recovery.

References

  1. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  2. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmonic Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: Numerical Optimization: Theoretical and Practical Aspects. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-35447-5

    Book  MATH  Google Scholar 

  4. Burger, M., Möller, M., Benning, M., Osher, S.: An adaptive inverse scale space method for compressed sensing. Math. Comput. 82(281), 269–299 (2013)

    Article  MathSciNet  Google Scholar 

  5. Cai, J.F., Osher, S., Shen, Z.: Linearized bregman iterations for compressed sensing. Math. Comput. 78(267), 1515–1536 (2009)

    Article  MathSciNet  Google Scholar 

  6. Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inform. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  Google Scholar 

  7. Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  Google Scholar 

  8. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  Google Scholar 

  9. Ciril, I., Darbon, J., Tendero, Y.: A simple and exact algorithm to solve l1 linear problems - application to the compressive sensing method. In: Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 54–62. INSTICC, SciTePress (2018)

    Google Scholar 

  10. Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inform. Theory 55(5), 2230–2249 (2009)

    Article  MathSciNet  Google Scholar 

  11. Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  12. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via \(\ell 1\) minimization. Proc. Natl. Acad. Sci. 100(5), 2197–2202 (2003)

    Article  MathSciNet  Google Scholar 

  13. Foucart, S.: Stability and robustness of weak orthogonal matching pursuits. In: Bilyk, D., De Carli, L., Petukhov, A., Stokolos, A., Wick, B. (eds.) Recent Advances in Harmonic Analysis and Applications, vol. 25, pp. 395–405. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-4565-4_30

    Chapter  MATH  Google Scholar 

  14. Grant, M.C., Boyd, S.P.: The CVX Users’ Guide, Release 2.1

    Google Scholar 

  15. Hale, E.T., Yin, W., Zhang, Y.: A fixed-point continuation method for l1-Regularized minimization with applications to compressed sensing. CAAM Technical Report TR07-07 (2007)

    Google Scholar 

  16. Hiriart-Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimization Algorithms II: Advanced Theory and Bundle Methods. Grundlehren der mathematischen Wissenschaften. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  17. Jain, P., Tewari, A., Dhillon, I.S.: Orthogonal matching pursuit with replacement. In: Advances in Neural Information Processing Systems, pp. 1215–1223 (2011)

    Google Scholar 

  18. Maleki, A.: Coherence analysis of iterative thresholding algorithms. In: 47th Annual Allerton Conference on Communication, Control, and Computing, Allerton, pp. 236–243. IEEE (2009)

    Google Scholar 

  19. Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)

    Article  Google Scholar 

  20. Moeller, M., Zhang, X.: Fast sparse reconstruction: greedy inverse scale space flows. Math. Comput. 85(297), 179–208 (2016)

    Article  MathSciNet  Google Scholar 

  21. Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmonic Anal. 26(3), 301–321 (2009)

    Article  MathSciNet  Google Scholar 

  22. Needell, D., Vershynin, R.: Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found. Comput. Math. 9(3), 317–334 (2009)

    Article  MathSciNet  Google Scholar 

  23. Nirody, J.A., Sun, Y.R., Lo, C.J.: The biophysicist’s guide to the bacterial flagellar motor. Adv. Phys.: X 2(2), 324–343 (2017)

    Google Scholar 

  24. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)

    Article  MathSciNet  Google Scholar 

  25. Osher, S., Mao, Y., Dong, B., Yin, W.: Fast linearized bregman iteration for compressive sensing and sparse denoising. arXiv preprint arXiv:1104.0262 (2011)

  26. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, pp. 40–44. IEEE (1993)

    Google Scholar 

  27. Sowa, Y., et al.: Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437(7060), 916 (2005)

    Article  Google Scholar 

  28. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inform. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  29. Zhang, X., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on bregman iteration. J. Sci. Comput. 46(1), 20–46 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Y. Sowa for the flagellar motor data used in our experiments. We also would like to thank M. Möller for providing the implementation of the AISS and GISS algorithms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohann Tendero .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 A.1 Notations and Definitions

(i) :

(n first integers)

(ii) :

(Vectors) Vectors of, e.g., \(\mathbb {R}^n\) are denoted in bold typeface, e.g., \(\mathbf {x}\). Other objects like scalars or functions are denoted in non-bold typeface. Entries of \(\mathbf {x}\) are denoted, e.g., \(x_i\)

(iii) :

(Norms) \(\Vert \mathbf {x}\Vert _1:=\sum _i |x_i|\), \(\Vert \mathbf {x}\Vert _2:= \sqrt{ \sum _i |x_i|^2}\) and \(\Vert \mathbf {x}\Vert _\infty := \max _i|x_i|\)

(iv) :

(Canonical basis) \( \mathbf {e}_i \) denotes the i-th canonical vector of \( \mathbb {R}^n,\) and \( \mathbf {\tilde{e}}_i \) denotes the i-th canonical vector of \( \mathbb {R}^{2n}\)

(v) :

(Inner product) \(\langle \mathbf {x}, \mathbf {y}\rangle =\sum _i x_i y_i\)

(vi) :

(Identity matrix) \( I_n \) denotes de identity matrix of size \( n \times n\)

(vii) :

(Transpose operator) \(M^\dagger \) denotes the transpose of a matrix M

(viii) :

(Column of matrix) col(Mi) denotes the i-th column of matrix M

(ix) :

(Convex function) A function \(f :\mathbb {R}^n \rightarrow \mathbb {R}\cup \{+\infty \}\) is said to be convex if \(\forall (\mathbf {x},\mathbf {y}) \in \mathbb {R}^n \times \mathbb {R}^n\) and \(\forall \alpha \in (0,1)\) holds true (in \( \mathbb {R}\cup \{+\infty \}\))

(x) :

(Set \(\varGamma _0(\mathbb {R}^n)\)) The set of lower semi-continuous, convex functions with \(\text {dom~}f \ne \emptyset \) is denoted by \(\varGamma _0(\mathbb {R}^n)\)

(xi) :

(Characteristic function of a set) \(\chi _{E}(\mathbf {x})=0\) if \(\mathbf {x}\in E\) and \(\chi _{E}(\mathbf {x})=+\infty \) otherwise

(xii) :

(Convex conjugate) For any f convex that satisfies \(\text {dom~}f \ne \emptyset \), the function \(f^*\) defined by \(\mathbb {R}^n \ni \mathbf {s}\mapsto f^*(\mathbf {s}):=\sup _{\mathbf {x}\in \text {dom~}f}\left\{ \langle \mathbf {s},\mathbf {x}\rangle -f(\mathbf {x}) \right\} \). (See, e.g., [16, Def. 1.1.1, p. 37])

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tendero, Y., Ciril, I., Darbon, J. (2019). A Simple and Exact Algorithm to Solve Linear Problems with \(\ell ^1\)-Based Regularizers. In: Bechmann, D., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2018. Communications in Computer and Information Science, vol 997. Springer, Cham. https://doi.org/10.1007/978-3-030-26756-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26756-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26755-1

  • Online ISBN: 978-3-030-26756-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics