Skip to main content

A Novel Framework for Improving the Prediction of Disease-Associated MicroRNAs

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11644))

Included in the following conference series:

  • 1436 Accesses

Abstract

Increasing evidences have shown that human complex diseases associate with plenty of miRNAs. Identifying potential associations between miRNAs and diseases provides great insight into studying the pathogenesis of complex diseases and improving drugs. However, most proposed prediction methods may not consider the existence of some impossible interactions in these unknown interactions which can be regard as negative interactions. In this paper, we proposed a framework to improve the prediction for some existing algorithms. The framework mainly consists of three steps, the first we cluster miRNAs and diseases from the given dataset by using k-medoids in order to find the weakly related interactions from unknown interactions as negative interactions. Secondly, we use existing algorithms to calculate the associated score matrix for miRNAs and diseases based on the given dataset. Finally, we combine the calculated scores with the potential negative interactions to get the final correlation scores. We conduct comprehensive experiments including 5-fold cross validation (5-fold CV) and leave-one-out cross validation (LOOCV) to indicate that our framework has some advantages including improving performance and universal applicability over several of prediction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambros, V.: The functions of animal microRNAs. Nature 431(7006), 350–355 (2004)

    Article  Google Scholar 

  2. Ding, P., Luo, J., Liang, C., et al.: Human disease MiRNA inference by combining target information based on heterogeneous manifolds. J. Biomed. Inform. 80, 26–36 (2018)

    Article  Google Scholar 

  3. Luo, J., Ding, L., Liang, C., et al.: An efficient network motif discovery approach for co-regulatory networks. IEEE Access 6, 14151–14158 (2018)

    Article  Google Scholar 

  4. Calin, G.A., Croce, C.M.: MicroRNA signatures in human cancers. Nat. Rev. Cancer 6(11), 857–866 (2006)

    Article  Google Scholar 

  5. Li, M., Zheng, R.Q., Li, Q., Wang, J.X., Wu, F.X., Zhang, Z.H.: Prioritizing disease genes by using search engine algorithm. Curr. Bioinform. 11(2), 195–202 (2016)

    Article  Google Scholar 

  6. Chen, B.L., Li, M., Wang, J.X., Shang, X.Q., Wu, F.X.: A fast and high performance multiple data integration algorithm for identifying human disease genes. BMC Med. Genom. 8(3), S2 (2015)

    Article  Google Scholar 

  7. Liu, Y., Luo, J., Ding, P.: Inferring microRNA targets based on restricted Boltzmann machines. IEEE J. Biomed. Health Inform. 23(1), 427–436 (2018)

    Article  Google Scholar 

  8. Ha, M., Kim, V.N.: Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15(8), 509–524 (2014)

    Article  MathSciNet  Google Scholar 

  9. Xu, G., et al.: MicroRNA-21 promotes hepatocellular carcinoma HepG2 cell proliferation through repression of mitogen-activated protein kinase 3. BMC Cancer 13(1), 469 (2013)

    Article  Google Scholar 

  10. Luo, J., Ding, P., Liang, C., et al.: Collective prediction of disease-associated miRNAs based on transduction learning. IEEE/ACM Trans. Comput. Biol. Bioinf. 14(6), 1468–1475 (2017)

    Article  Google Scholar 

  11. Li, Y., et al.: HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res. 42(D1), D1070–D1074 (2014)

    Article  Google Scholar 

  12. Zou, Q., Li, J., Song, L., et al.: Similarity computation strategies in the microRNA-disease network: a survey. Brief. Funct. Genom. 15(1), 55–64 (2016)

    Google Scholar 

  13. Jiang, Q., et al.: Prioritization of disease microRNAs through a human phenome-microRNAome network. BMC Syst. Biol. 4(1), S2 (2010)

    Article  Google Scholar 

  14. Mørk, S., Pletscher-Frankild, S., Palleja Caro, A., Gorodkin, J., Jensen, L.J.: Protein-driven inference of miRNA-disease associations. Bioinformatics 30(3), 392–397 (2014)

    Article  Google Scholar 

  15. Gu, C., Liao, B., Li, X., et al.: Network consistency projection for human miRNA-disease associations inference. Sci. Rep. 6, 36054 (2016)

    Article  Google Scholar 

  16. Luo, H.M., et al.: Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm. Bioinformatics 32(17), 2664–2671 (2016)

    Article  Google Scholar 

  17. Peng, W., Li, M., Chen, L., Wang, L.S.: Predicting protein functions by using unbalanced random walk algorithm on three biological networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(2), 360–369 (2015)

    Article  Google Scholar 

  18. Xuan, P., et al.: Prediction of potential disease-associated microRNAs based on random walk. Bioinformatics 31(11), 1805–1815 (2015)

    Article  MathSciNet  Google Scholar 

  19. Huang, Y.A., You, Z.H., Li, L.P., et al.: EPMDA: an expression-profile based computational model for microRNA-disease association prediction. Oncotarget 8(50), 87033–87043 (2017)

    Google Scholar 

  20. Chen, X., Liu, M.X., Yan, G.Y.: RWRMDA: predicting no vel human microRNA–disease associations. Mol. BioSyst. 8(10), 2792–2798 (2012)

    Article  Google Scholar 

  21. Xu, J., Li, C.X., Lv, J.Y., et al.: Prioritizing candidate disease miRNAs by topological features in the miRNA target-dysregulated network: case study of prostate cancer. Mol. Cancer Ther. 10(10), 1857–1866 (2011)

    Article  Google Scholar 

  22. Chen, X., Yan, G.Y.: Semi-supervised learning for potential human microRNA-disease associations inference. Sci. Rep. 4(1), 5501 (2014)

    Article  MathSciNet  Google Scholar 

  23. Chen, X., et al.: RBMMMDA: predicting multiple types of disease microRNA associations. Sci. Rep. 8(5), 13877 (2015)

    Article  Google Scholar 

  24. Quan, Z., Jinjin, L., Qingqi, H., et al.: Prediction of MicroRNA-disease associations based on social network analysis methods. Biomed. Res. Int. 2015, 1–9 (2015)

    Google Scholar 

  25. Keum, J., Nam, H.: SELF-BLM: prediction of drug-target interactions via self-training SVM. PLoS One 12(2), e0171839 (2017)

    Article  Google Scholar 

  26. Lipscomb, C.E.: Medical subject headings (MeSH). Bull. Med. Libr. Assoc. 88(3), 265–266 (2000)

    Google Scholar 

  27. Wang, D., Wang, J., Lu, M., et al.: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 26(13), 1644–1650 (2010)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant 61873089, 61572180. (Corresponding author: Jiawei Luo.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawei Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, W., Luo, J., Tu, N.H. (2019). A Novel Framework for Improving the Prediction of Disease-Associated MicroRNAs. In: Huang, DS., Jo, KH., Huang, ZK. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11644. Springer, Cham. https://doi.org/10.1007/978-3-030-26969-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26969-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26968-5

  • Online ISBN: 978-3-030-26969-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics