Skip to main content

LRMDA: Using Logistic Regression and Random Walk with Restart for MiRNA-Disease Association Prediction

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11644))

Included in the following conference series:

Abstract

MicroRNAs (MiRNAs) have received much attention in recent years because growing evidences indicate that they play critical roles in tumor initiation and progression. Predicting underlying disease-related miRNAs from existing huge amount of biological data is a hot topic in biomedical research. Herein, we presented a novel computational model of logistic regression and random walk with restart algorithm for miRNA-disease association prediction (LRMDA) through integrating multi-source data. The model employs random walk with restart to fuse the association distribution between miRNAs and diseases and obtains highly discriminative feature from those heterogeneous data. To evaluate the performance of LRMDA, we performed 5-fold cross validation to compare it with several state-of-the-art models. As a result, our model achieves mean AUC of 0.9230 ± 0.0059. Besides, we carried out case study for predicting potential miRNAs related to Esophageal Neoplasms (EN). The achieved results indicate that 90% out of the top 50 prioritized miRNAs for EN are confirmed by biological experiments and further demonstrates the feasibility of our method. Therefore, LRMDA could potentially aid future research efforts for miRNA-disease association identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Victor, A.: The functions of animal microRNAs. Nature 431(7006), 350–355 (2004)

    Article  Google Scholar 

  2. Chen, X., Xie, D., Wang, L., Zhao, Q., You, Z.-H., Liu, H.: BNPMDA: Bipartite Network Projection for MiRNA–Disease Association prediction. Bioinformatics 34, 3178–3186 (2018)

    Article  Google Scholar 

  3. Wang, L., et al.: LMTRDA: using logistic model tree to predict miRNA-disease associations by fusing multi-source information of sequences and similarities. PLoS Comput. Biol. 15(3), e1006865 (2019)

    Article  Google Scholar 

  4. Kozomara, A., Birgaoanu, M., Griffiths-Jones, S.: miRBase: from microRNA sequences to function. Nucleic Acids Res. 47(D1), D155–D162 (2018)

    Article  Google Scholar 

  5. Lee, R.C., Feinbaum, R.L., Ambros, V.: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5), 843 (1993)

    Article  Google Scholar 

  6. Kozomara, A., Griffiths-Jones, S.: miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42(Database issue), D68–D73 (2014)

    Article  Google Scholar 

  7. Cheng, A.M., Byrom, M.W., Jeffrey, S., Ford, L.P.: Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 33(4), 1290–1297 (2005)

    Article  Google Scholar 

  8. Miska, E.A.: How microRNAs control cell division, differentiation and death. Curr. Opin. Gen. Dev. 15(5), 563–568 (2005)

    Article  Google Scholar 

  9. Karp, X., Ambros, V.: Encountering MicroRNAs in cell fate signaling. Science 310(5752), 1288–1289 (2005)

    Article  Google Scholar 

  10. Acunzo, M., Croce, C.M.: Downregulation of miR-15a and miR-16-1 at 13q14 in chronic lymphocytic leukemia. Clin. Chem. 62(4), 655–656 (2016)

    Article  Google Scholar 

  11. Zhang, G., et al.: Downregulation of microRNA-181d had suppressive effect on pancreatic cancer development through inverse regulation of KNAIN2. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 39(4), 1010428317698364 (2017)

    Google Scholar 

  12. You, Z.-H., et al.: PRMDA: personalized recommendation-based MiRNA-disease association prediction. Oncotarget 8(49), 85568 (2017)

    Article  Google Scholar 

  13. Chen, X., et al.: A novel computational model based on super-disease and miRNA for potential miRNA–disease association prediction. Mol. BioSyst. 13(6), 1202–1212 (2017)

    Article  Google Scholar 

  14. Chen, X., Gong, Y., Zhang, D.H., You, Z.H., Li, Z.W.: DRMDA: deep representations-based miRNA-disease association prediction. J. Cell Mol. Med. 22(1), 472–485 (2018)

    Article  Google Scholar 

  15. Bandyopadhyay, S., Mitra, R., Maulik, U., Zhang, M.Q.: Development of the human cancer microRNA network. Silence 1(1), 6 (2010)

    Article  Google Scholar 

  16. You, Z.H., et al.: PBMDA: a novel and effective path-based computational model for miRNA-disease association prediction. PLoS Comput. Biol. 13(3), e1005455 (2017)

    Article  Google Scholar 

  17. Chen, X., Huang, L.: LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction. PLoS Comput. Biol. 13(12), e1005912 (2017)

    Article  Google Scholar 

  18. Jiang, Q., et al.: Prioritization of disease microRNAs through a human phenome-microRNAome network. BMC Syst. Biol. 4(s1), S2 (2010)

    Article  Google Scholar 

  19. Shi, H., et al.: Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes. BMC Syst. Biol. 7, 101 (2013). https://doi.org/10.1186/1752-0509-7-101

    Article  Google Scholar 

  20. Chen, X., et al.: WBSMDA: Within and Between Score for MiRNA-Disease Association prediction. Sci. Rep. 6(1), 21106 (2016)

    Article  MathSciNet  Google Scholar 

  21. Chen, X., Huang, L., Xie, D., Zhao, Q.: EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction. Cell Death Dis. 9(1), 3 (2018)

    Article  Google Scholar 

  22. Li, J.-Q., Rong, Z.-H., Chen, X., Yan, G.-Y., You, Z.-H.: MCMDA: matrix completion for MiRNA-disease association prediction. Oncotarget 8(13), 21187–21199 (2017)

    Google Scholar 

  23. Huang, Y.-A., et al.: EPMDA: an expression-profile based computational model for microRNA-disease association prediction. Oncotarget 8(50), 87033 (2017)

    Google Scholar 

  24. Li, Y., et al.: HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res. 42(Database issue), D1070–D1074 (2014)

    Article  Google Scholar 

  25. Wang, D., Wang, J., Lu, M., Song, F., Cui, Q.: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 26(13), 1644–1650 (2010)

    Article  Google Scholar 

  26. Xuan, P., et al.: Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors. PLoS ONE 8(8), e70204 (2013)

    Article  Google Scholar 

  27. Chen, X., Zhang, D.-H., You, Z.-H.: A heterogeneous label propagation approach to explore the potential associations between miRNA and disease. J. Transl. Med. 16(1), 348 (2018)

    Article  Google Scholar 

  28. Jiang, Q., Wang, G., Jin, S., Li, Y., Wang, Y.: Predicting human microRNA-disease associations based on support vector machine. Int. J. Data Min. Bioinform. 8(3), 282–293 (2013)

    Article  Google Scholar 

  29. Li, Z.W., et al.: Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier. Oncotarget 8(14), 23638 (2017)

    Google Scholar 

  30. An, J.Y., et al.: Identification of self-interacting proteins by exploring evolutionary information embedded in PSI-BLAST-constructed position specific scoring matrix. Oncotarget 7(50), 82440–82449 (2016)

    Article  Google Scholar 

  31. Li, Z., et al.: In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences. Sci. Rep. 7(1), 11174 (2017)

    Article  Google Scholar 

  32. Köhler, S., Bauer, S., Horn, D., Robinson, P.N.: Walking the interactome for prioritization of candidate disease genes. Am. J. Hum. Genet. 82(4), 949–958 (2008)

    Article  Google Scholar 

  33. Wei, L., Wu, S., Zhang, J., Xu, Y.: Random walk based global feature for disease gene identification. In: Tan, T., Li, X., Chen, X., Zhou, J., Yang, J., Cheng, H. (eds.) CCPR 2016. CCIS, vol. 663, pp. 464–473. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-3005-5_38

    Chapter  Google Scholar 

  34. Yang, Z., et al.: dbDEMC: a database of differentially expressed miRNAs in human cancers. BMC Genom. 11(Suppl 4), S5 (2010)

    Article  Google Scholar 

  35. Jiang, Q., et al.: miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 37(Database), D98–D104 (2009)

    Article  Google Scholar 

  36. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)

    Article  Google Scholar 

  37. Zhang, C., et al.: Expression profile of MicroRNAs in serum: a fingerprint for esophageal squamous cell carcinoma. Clin. Chem. 56(12), 1871–1879 (2010)

    Article  Google Scholar 

  38. Shen, F., et al.: Genetic variants in miR-196a2 and miR-499 are associated with susceptibility to esophageal squamous cell carcinoma in Chinese Han population. Tumor Biol. 37(4), 4777–4784 (2016)

    Article  Google Scholar 

  39. Zhao-Li, C., et al.: microRNA-92a promotes lymph node metastasis of human esophageal squamous cell carcinoma via E-cadherin. J. Biol. Chem. 286(12), 10725–10734 (2011)

    Article  Google Scholar 

  40. Sun, Y., Yu, X., Bai, Q.: miR-204 inhibits invasion and epithelial-mesenchymal transition by targeting FOXM1 in esophageal cancer. Int. J. Clin. Exp. Pathol. 8(10), 12775–12783 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant No. 61873270, 61732012), the Jiangsu Postdoctoral Innovation Plan (Grant No. 1701031C), and the Jiangsu Shuangchuang Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengwei Li or Ru Nie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Nie, R., You, Z., Zhao, Y., Ge, X., Wang, Y. (2019). LRMDA: Using Logistic Regression and Random Walk with Restart for MiRNA-Disease Association Prediction. In: Huang, DS., Jo, KH., Huang, ZK. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11644. Springer, Cham. https://doi.org/10.1007/978-3-030-26969-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26969-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26968-5

  • Online ISBN: 978-3-030-26969-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics