Skip to main content

MPdeep: Medical Procession with Deep Learning

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11644))

Included in the following conference series:

  • 1396 Accesses

Abstract

The thoracic diseases, can be regarded as one of the most serious and dangerous diseases, threat to the health of human being. Among these diseases, some of them may cause functional impairment and sequela in some degree and some dangerous ones may lead to death and organ failure or death. With the development of the artificial intelligence, the deep learning method can be utilized to deal with such issue. In this work, we proposed the MPdeep to demonstrate the medical imaging procession in the field. With such method, we can find out that the identical image quality of contrast enhanced chest CT, application of 40% DR reduced 48.5% radiation dose, and combination of 40% DR and 100 kV further reduce 58.9% radiation dose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benediktsson, J.A., Ghamisi, P.: Spectral-spatial classification of hyperspectral remote sensing images. Artech House, Boston (2015)

    Google Scholar 

  2. Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14(1), 55–63 (1968)

    Article  Google Scholar 

  3. Dias, J.B., et al.: Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Sens. Mag. 1(2), 6–36 (2013)

    Article  Google Scholar 

  4. Jia, X., Kuo, B., Crawford, M.M.: Feature mining for hyperspectral image classification. Proc. IEEE 101(3), 676–679 (2013)

    Article  Google Scholar 

  5. Licciardi, G., Marpu, P.R., Chanussot, J., Benediktsson, J.A.: Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles. IEEE Geosci. Remote Sens. Lett. 9(3), 447–451 (2011)

    Article  Google Scholar 

  6. Villa, A., Benediktsson, J.A., Chanussot, J., Jutten, C.: Hyperspectral image classification with independent component discriminant analysis. IEEE Trans. Geosci. Remote Sens. 49(12), 4865–4876 (2011)

    Article  Google Scholar 

  7. Bandos, T.V., Bruzzone, L., Camps-Valls, G.: Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans. Geosci. Remote Sens. 47(3), 862–873 (2009)

    Article  Google Scholar 

  8. Bruce, L.M., Koger, C.H., Li, J.: Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Trans. Geosci. Remote Sens. 40(10), 2331–2338 (2002)

    Article  Google Scholar 

  9. Jimenez, L.O., Landgrebe, D.A.: Hyperspectral data analysis and supervised feature reduction via projection pursuit. IEEE Trans. Geosci. Remote Sens. 37(6), 2653–2667 (1999)

    Article  Google Scholar 

  10. Lunga, D., Prasad, S., Crawford, M.M., Ersoy, O.: Manifold-learningbased feature extraction for classification of hyperspectral data: a review of advances in manifold learning. IEEE Signal Process. Mag. 31(1), 55–66 (2014)

    Article  Google Scholar 

  11. Han, T., Goodenough, D.: Investigation of nonlinearity in hyperspectral imagery using surrogate data methods. IEEE Trans. Geosci. Remote Sens. 46(10), 2840–2847 (2008)

    Article  Google Scholar 

  12. Tenenbaum, B., Silva, V., Langford, C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  13. Roweis, S., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  14. Bachmann, C.M., Ainsworth, T.L., Fusina, R.A.: Improved manifold coordinate representations of large-scale hyperspectral scenes. IEEE Trans. Geosci. Remote Sens. 44(10), 2786–2803 (2006)

    Article  Google Scholar 

  15. Scholkopf, B., Smola, A.J.: Learning With Kernels. MIT Press, Cambridge (2002)

    MATH  Google Scholar 

  16. Kuo, B.C., Li, C.H., Yang, J.M.: Kernel nonparametric weighted feature extraction for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 47(4), 1139–1155 (2009)

    Article  Google Scholar 

  17. Plaza, A., Plaza, J., Martin, G.: Incorporation of spatial constraints into spectral mixture analysis of remotely sensed hyperspectral data. In: Proceedings IEEE International Workshop Machine Learning Signal Processing, Grenoble, France, 2009, pp. 1–6

    Google Scholar 

  18. Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C.: Advances in spectral–spatial classification of hyperspectral images. Proc. IEEE 101(3), 652–675 (2013)

    Article  Google Scholar 

  19. Tarabalka, Y., Fauvel, M., Chanussot, J., Benediktsson, J.A.: SVM- and MRF-based method for accurate classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 7(4), 736–740 (2010)

    Article  Google Scholar 

  20. Fauvel, M., Benediktsson, J.A., Chanussot, J., Sveinsson, J.: Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 46(11), 3804–3814 (2008)

    Article  Google Scholar 

  21. Li, J., Bioucas-Dias, J.M., Plaza, A.: Spectral–spatial classification of hyperspectral data using loopy belief propagation and active learning. IEEE Trans. Geosci. Remote Sens. 51(2), 844–856 (2013)

    Article  Google Scholar 

  22. Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 49(10), 3973–3985 (2011)

    Article  Google Scholar 

  23. Song, B., Li, J., Bioucas-Dias, J.M., Benediktsson, J.A.: Remotely sensed image classification using sparse representations of morphological attribute profiles. IEEE Trans. Geosci. Remote Sens. 52(8), 5122–5136 (2013)

    Article  Google Scholar 

  24. Bengio, Y., Courville, A., Vincent, P.: Representation learning. a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  25. Kruger, N., et al.: Deep hierarchies in primate visual cortex what can we learn for computer vision? IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1847–1871 (2013)

    Article  Google Scholar 

  26. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Proceedings Neural Information Processing System, pp. 1106–1114, Lake Tahoe, NV, USA (2012)

    Google Scholar 

  27. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  28. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  29. Chen, Y., Lin, Z., Zhao, X., Wang, G.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 7(6), 2094–2107 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants of the National Science Foundation of China, Nos. 61133011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzheng Bao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Q., Bao, W., Wang, Z. (2019). MPdeep: Medical Procession with Deep Learning. In: Huang, DS., Jo, KH., Huang, ZK. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11644. Springer, Cham. https://doi.org/10.1007/978-3-030-26969-2_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26969-2_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26968-5

  • Online ISBN: 978-3-030-26969-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics