Skip to main content

Numerical Modeling of Hydrodynamic Turbulence with Self-gravity on Intel Xeon Phi KNL

  • Conference paper
  • First Online:
Parallel Computational Technologies (PCT 2019)

Abstract

In this paper, we present the results of numerical simulations of hydrodynamic turbulence with self-gravity, employing the latest Intel Xeon Phi accelerators with KNL architecture. A new vectorized numerical method with a high order of accuracy on a local stencil is described in details. We outline the main features of the program implementation of the method for massively parallel architectures and study the code parallel implementation. We achieved a performance of 173 gigaFLOPS and an acceleration factor of 48 using a single Intel Xeon Phi KNL. Using 16 accelerators, we were able to achieve a scalability of 97%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klessen, R., Heitsch, F., Mac Low, M.-M.: Gravitational collapse in turbulent molecular clouds I. Gasdynamical turbulence. Astrophys. J. 535, 887–906 (2000). https://doi.org/10.1086/308891

    Article  Google Scholar 

  2. Heitsch, F., Mac Low, M.-M., Klessen, R.: Gravitational Collapse in turbulent molecular clouds II. Magnetohydrodynamical turbulence. Astrophys. J. 547, 280–291 (2001). https://doi.org/10.1086/318335

    Article  Google Scholar 

  3. Beresnyak, A., Xu, H., Li, H., Schlickeiser, R.: Magnetohydrodynamic turbulence and cosmic-ray reacceleration in galaxy clusters. Astrophys. J. Suppl. Ser. 771, 131 (2013). https://doi.org/10.1088/0004-637X/771/2/131

    Article  Google Scholar 

  4. Kim, W., Ostriker, E.: Amplification, saturation, and Q Thresholds for runaway: growth of self-gravitating structures in models of magnetized galactic gas disks. Astrophys. J. 559, 70–95 (2001). https://doi.org/10.1086/322330

    Article  Google Scholar 

  5. Alig, C., Burkert, A., Johansson, P., Schartmann, M.: Simulations of direct collisions of gas clouds with the central black hole. Mon. Not. Roy. Astron. Soc. 412(1), 469–486 (2011). https://doi.org/10.1111/j.1365-2966.2010.17915.x

    Article  Google Scholar 

  6. Petrov, M., Berczik, P.: Simulation of the gravitational collapse and fragmentation of rotating molecular clouds. Astron. Nachr. 326(7), 505–513 (2005)

    Google Scholar 

  7. Beresnyak, A.: Basic properties of magnetohydrodynamic turbulence in the inertial range. Mon. Not. Roy. Astron. Soc. 422(4), 3495–3502 (2012). https://doi.org/10.1111/j.1365-2966.2012.20859.x

    Article  Google Scholar 

  8. Mason, J., Perez, J.C., Cattaneo, F., Boldyrev, S.: Extended scaling laws in numerical simulations of magnetohydrodynamic turbulence. Astrophys. J. Lett. 735, L26 (2011). https://doi.org/10.1088/2041-8205/735/2/L26

    Article  Google Scholar 

  9. Perez, J.C., Boldyrev, S.: Numerical simulations of imbalanced strong magnetohydrodynamic turbulence. Astrophys. J. Lett. 710, L63–L66 (2010). https://doi.org/10.1088/2041-8205/710/1/L63

    Article  Google Scholar 

  10. Beresnyak, A.: Spectra of strong magnetohydrodynamic turbulence from high-resolution simulations. Astrophys. J. Lett. 784, L20 (2014). https://doi.org/10.1088/2041-8205/784/2/L20

    Article  Google Scholar 

  11. McKee, C.F., Li, P.S., Klein, R.: Sub-alfvenic non-ideal MHD turbulence simulations with ambipolar diffusion II. Comparison with observation, clump properties, and scaling to physical units. Astrophys. J. 720, 1612–1634 (2010). https://doi.org/10.1088/0004-637X/720/2/1612

    Article  Google Scholar 

  12. Federrath, C., Klessen, R.: The star formation rate of turbulent magnetized clouds: comparing theory, simulations, and observations. Astrophys. J. 761, 156 (2012). https://doi.org/10.1088/0004-637X/761/2/156

    Article  Google Scholar 

  13. Kritsuk, A., et al.: Comparing numerical methods for isothermal magnetized supersonic turbulence. Astrophys. J. 737, 13 (2011). https://doi.org/10.1088/0004-637X/737/1/13

    Article  Google Scholar 

  14. Galtier, S., Buchlin, E.: Multiscale hall-magnetohydrodynamic turbulence in the solar wind. Astrophys. J. 656, 560–566 (2007). https://doi.org/10.1086/510423

    Article  Google Scholar 

  15. Willcox, D., Townsley, D., Calder, A., Denissenkov, P., Herwig, F.: Type Ia supernova explosions from hybrid carbon-oxygen-neon white dwarf progenitors. Astrophys. J. 832, 13 (2016). https://doi.org/10.3847/0004-637X/832/1/13

    Article  Google Scholar 

  16. Schive, H., Tsai, Y., Chiueh, T.: GAMER: a GPU-accelerated adaptive-mesh-refinement code for astrophysics. Astrophys. J. 186, 457–484 (2010). https://doi.org/10.1088/0067-0049/186/2/457

    Article  Google Scholar 

  17. Kulikov, I.: GPUPEGAS: a new GPU-accelerated hydrodynamic code for numerical simulations of interacting galaxies. Astrophys. J. Supp. Ser. 214, 1–12 (2014). https://doi.org/10.1088/0067-0049/214/1/12

    Article  Google Scholar 

  18. Kulikov, I.M., Chernykh, I.G., Snytnikov, A.V., Glinskiy, B.M., Tutukov, A.V.: AstroPhi: a code for complex simulation of dynamics of astrophysical objects using hybrid supercomputers. Comput. Phys. Commun. 186, 71–80 (2015). https://doi.org/10.1016/j.cpc.2014.09.004

    Article  Google Scholar 

  19. Schneider, E., Robertson, B.: Cholla: a new massively parallel hydrodynamics code for astrophysical simulation. Astrophys. J. Suppl. Ser. 217, 2–24 (2015). https://doi.org/10.1088/0067-0049/217/2/24

    Article  Google Scholar 

  20. Benitez-Llambay, P., Masset, F.: FARGO3D: a new GPU-oriented MHD code. Astrophys. J. Suppl. Ser. 223, 1–11 (2016). https://doi.org/10.3847/0067-0049/223/1/11

    Article  Google Scholar 

  21. Pekkilaa, J., Vaisalab, M., Kapylac, M., Kapylad, P., Anjum, O.: Methods for compressible fluid simulation on GPUs using high-order finite differences. Comput. Phys. Commun. 217, 11–22 (2017). https://doi.org/10.1016/j.cpc.2017.03.011

    Article  MathSciNet  Google Scholar 

  22. Griffiths, M., Fedun, V., Erdelyi, R.: A fast MHD code for gravitationally stratified media using graphical processing units: SMAUG. J. Astrophys. Astron. 36(1), 197–223 (2015). https://doi.org/10.1007/s12036-015-9328-y

    Article  Google Scholar 

  23. Mendygral, P., et al.: WOMBAT: a scalable and high-performance astrophysical magnetohydrodynamics code. Astrophys. J. Suppl. Ser. 228, 2–23 (2017). https://doi.org/10.3847/1538-4365/aa5b9c

    Article  Google Scholar 

  24. Surmin, I., et al.: Particle-in-cell laser-plasma simulation on Xeon Phi coprocessors. Comput. Phys. Commun. 202, 204–210 (2016). https://doi.org/10.1016/j.cpc.2016.02.004

    Article  Google Scholar 

  25. Needham, P., Bhuiyan, A., Walker, R.: Extension of the AMBER molecular dynamics software to Intel’s Many Integrated Core (MIC) architecture. Comput. Phys. Commun. 201, 95–105 (2016). https://doi.org/10.1016/j.cpc.2015.12.025

    Article  Google Scholar 

  26. Brown, W.M., Carrillo, J.-M.Y., Gavhane, N., Thakkar, F.M.: Optimizing legacy molecular dynamics software with directive-based offload. Comput. Phys. Commun. 195, 95–101 (2015). https://doi.org/10.1016/j.cpc.2015.05.004

    Article  Google Scholar 

  27. Bernaschia, M., Bissona, M., Salvadore, F.: Multi-Kepler GPU vs. multi-Intel MIC for spin systems simulations. Comput. Phys. Commun. 185, 2495–2503 (2014). https://doi.org/10.1016/j.cpc.2014.05.026

    Article  Google Scholar 

  28. Nishiura, D., Furuichi, M., Sakaguchi, H.: Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing. Comput. Phys. Commun. 194, 18–32 (2015). https://doi.org/10.1016/j.cpc.2015.04.006

    Article  Google Scholar 

  29. Kulikov, I., Chernykh, I., Tutukov, A.: A new hydrodynamic model for numerical simulation of interacting galaxies on Intel Xeon Phi supercomputers. J. Phys: Conf. Ser. 719, 012006 (2016). https://doi.org/10.1088/1742-6596/719/1/012006

    Article  Google Scholar 

  30. Glinsky, B., Kulikov, I., Chernykh, I., et al.: The co-design of astrophysical code for massively parallel supercomputers. Lect. Notes Comput. Sci. 10049, 342–353 (2017). https://doi.org/10.1007/978-3-319-49956-7_27

    Article  Google Scholar 

  31. Kulikov, I.M., Chernykh, I.G., Glinskiy, B.M., Protasov, V.A.: An efficient optimization of HLL method for the second generation of Intel Xeon Phi processor. Lobachevskii J. Math. 39(4), 543–550 (2018). https://doi.org/10.1134/S1995080218040091

    Article  MathSciNet  MATH  Google Scholar 

  32. Kulikov, I.M., Chernykh, I.G., Tutukov, A.V.: A new parallel Intel Xeon Phi hydrodynamics code for massively parallel supercomputers. Lobachevskii J. Math. 39(9), 1207–1216 (2018). https://doi.org/10.1134/S1995080218090135

    Article  MathSciNet  MATH  Google Scholar 

  33. Kulikov, I., Vorobyov, E.: Using the PPML approach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows. J. Comput. Phys. 317, 318–346 (2016). https://doi.org/10.1016/j.jcp.2016.04.057

    Article  MathSciNet  MATH  Google Scholar 

  34. Kulikov, I., Chernykh, I., Protasov, V.: Mathematical modeling of formation, evolution and interaction of galaxies in cosmological context. J. Phys: Conf. Ser. 722, 012023 (2016). https://doi.org/10.1088/1742-6596/722/1/012023

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the Russian Science Foundation (project 18-11-00044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Kulikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kulikov, I. et al. (2019). Numerical Modeling of Hydrodynamic Turbulence with Self-gravity on Intel Xeon Phi KNL. In: Sokolinsky, L., Zymbler, M. (eds) Parallel Computational Technologies. PCT 2019. Communications in Computer and Information Science, vol 1063. Springer, Cham. https://doi.org/10.1007/978-3-030-28163-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28163-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28162-5

  • Online ISBN: 978-3-030-28163-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics