Skip to main content

Prediction of Citation Dynamics of Individual Papers

  • Chapter
  • First Online:
Citation Analysis and Dynamics of Citation Networks

Part of the book series: SpringerBriefs in Complexity ((BRIEFSCOMPLEXITY))

  • 587 Accesses

Abstract

We apply stochastic model of citation dynamics of individual papers developed in Chap. 3 to forecast citation career of individual papers. We focus not only on the estimate of the future citations of a paper but on the probabilistic margins of such estimate as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, J. (2005). Early citation counts correlate with accumulated impact. Scientometrics, 63(3), 567–581.

    Article  Google Scholar 

  2. Bollen, J., Van de Sompel, H., Hagberg, A., & Chute, R. (2009). A principal component analysis of 39 scientific impact measures. PLoS One, 4(6), e6022.

    Article  ADS  Google Scholar 

  3. Brot, H., & Louzoun, Y. Private communication.

    Google Scholar 

  4. Cao, X., Chen, Y., & Ray Liu, K. J. (2016). A data analytic approach to quantifying scientific impact. Journal of Informetrics, 10(2), 471–484.

    Article  Google Scholar 

  5. Castillo, C., Donato, D., & Gionis, A. (2007). Estimating number of citations using author reputation. In N. Ziviani & R. Baeza-Yates (Eds.), String processing and information retrieval (pp. 107–117). Berlin: Springer.

    Chapter  Google Scholar 

  6. Clauset, A., Larremore, D. B., & Sinatra, R. (2017). Data-driven predictions in the science of science. Science, 355(6324), 477–480.

    Article  ADS  Google Scholar 

  7. Didegah, F., & Thelwall, M. (2013). Which factors help authors produce the highest impact research? Collaboration, journal and document properties. Journal of Informetrics, 7(4), 861–873.

    Article  Google Scholar 

  8. Fortunato, S., Flammini, A., & Menczer, F. (2006). Scale-free network growth by ranking. Physical Review Letters, 96(21), 218701.

    Article  ADS  Google Scholar 

  9. Fox, C. W., Timothy Paine, C. E., & Sauterey, B. (2019). Citations increase with manuscript length, author number, and references cited in ecology journals. Ecology and Evolution, 6(21), 7717–7726.

    Article  Google Scholar 

  10. Glanzel, W., Schlemmer, B., & Thijs, B. (2003). Better late than never? On the chance to become highly cited only beyond the standard bibliometric time horizon. Scientometrics, 58(3), 571–586.

    Article  Google Scholar 

  11. Golosovsky, M., & Solomon, S. (2012). Runaway events dominate the heavy tail of citation distributions. The European Physical Journal, 205(1), 303–311.

    ADS  Google Scholar 

  12. Golosovsky, M., & Solomon, S. (2017). Growing complex network of citations of scientific papers: Modeling and measurements. Physical Review E, 95(1), 012324.

    Article  ADS  Google Scholar 

  13. Hazouglou, M. J., Kulkarni, V., Skiena, S. S., & Dill, K. A. (2017). Citation histories of papers: sometimes the rich get richer, sometimes they don’t. Preprint arXiv:1703.04746.

    Google Scholar 

  14. Higham, K. W., Governale, M., Jaffe, A. B., & Zülicke, U. (2019). Ex-ante measure of patent quality reveals intrinsic fitness for citation-network growth. Physical Review E, 99(6), 060301.

    Article  ADS  Google Scholar 

  15. Ke, Q., Ferrara, E., Radicchi, F., & Flammini, A. (2015). Defining and identifying sleeping beauties in science. Proceedings of the National Academy of Sciences, 112(24), 7426–7431.

    Article  ADS  Google Scholar 

  16. Ke, W. (2013). A fitness model for scholarly impact analysis. Scientometrics, 94(3), 981–998.

    Article  Google Scholar 

  17. Klimek, P., Jovanovic, A. S., Egloff, R., & Schneider, R. (2016). Successful fish go with the flow: Citation impact prediction based on centrality measures for term–document networks. Scientometrics, 107(3), 1265–1282.

    Article  Google Scholar 

  18. Kong, J. S., Sarshar, N., & Roychowdhury, V. P. (2008). Experience versus talent shapes the structure of the Web. Proceedings of the National Academy of Sciences, 105(37), 13724–13729.

    Article  ADS  Google Scholar 

  19. Larivière, V., & Gingras, Y. (2010). The impact factor’s Matthew effect: A natural experiment in bibliometrics. Journal of the Association for Information Science & Technology, 61(2), 424–427.

    Google Scholar 

  20. Letchford, A., Moat, H. S., & Preis, T. (2015). The advantage of short paper titles. Royal Society Open Science, 2(8), 150266.

    Article  ADS  Google Scholar 

  21. Leydesdorff, L., Wagner, C. S., & Bornmann, L. (2018). Discontinuities in citation relations among journals: Self-organized criticality as a model of scientific revolutions and change. Scientometrics, 116(1), 623–644.

    Article  Google Scholar 

  22. Li, L., & Tong, H. (2015). The child is father of the man: Foresee the success at the early stage. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY: ACM.

    Google Scholar 

  23. Mariani, M. S., Medo, M., & Lafond, F. (2019). Early identification of important patents: Design and validation of citation network metrics. Technological Forecasting and Social Change, 146 , 644–654.

    Article  Google Scholar 

  24. Mukherjee, S., Romero, D. M., Jones, B., & Uzzi, B. (2017). The nearly universal link between the age of past knowledge and tomorrows breakthroughs in science and technology: The hotspot. Science Advances, 3(4), e1601315.

    Article  ADS  Google Scholar 

  25. Newman, M. E. J. (2009). The first-mover advantage in scientific publication. Europhysics Letters, 86(6), 68001.

    Article  ADS  Google Scholar 

  26. Peters, H. P. F., & van Raan, A. F. J. (1994). On determinants of citation scores: A case study in chemical engineering. Journal of the American Society for Information Science, 45(1), 39–49.

    Article  Google Scholar 

  27. Pham, T., Sheridan, P., & Shimodaira, H. (2015). PAFit: A statistical method for measuring preferential attachment in temporal complex networks. PLoS One, 10(9), e0137796.

    Article  Google Scholar 

  28. Pham, T., Sheridan, P., & Shimodaira, H. (2016). Joint estimation of preferential attachment and node fitness in growing complex networks. Scientific Reports, 6, 32558.

    Article  ADS  Google Scholar 

  29. Ponomarev, I. V., Lawton, B. K., Williams, D. E., & Schnell, J. D. (2014). Breakthrough paper indicator 2.0: Can geographical diversity and interdisciplinarity improve the accuracy of outstanding papers prediction? Scientometrics, 100(3), 755–765.

    Google Scholar 

  30. Redner, S. (2005). Citation statistics from 110 years of Physical Review. Physics Today, 58(6), 49–54.

    Article  Google Scholar 

  31. Simkin, M. V., & Roychowdhury, V. P. (2007). A mathematical theory of citing. Journal of the American Society for Information Science and Technology, 58(11), 1661–1673.

    Article  Google Scholar 

  32. Stegehuis, C., Litvak, N., & Waltman, L. (2015). Predicting the long-term citation impact of recent publications. Journal of Informetrics, 9(3), 642–657.

    Article  Google Scholar 

  33. Stringer, M. J., Sales-Pardo, M., & Amaral, L. A. N. (2008). Effectiveness of journal ranking schemes as a tool for locating information. PLoS One, 3(2), e1683.

    Article  ADS  Google Scholar 

  34. Tahamtan, I., Afshar, A. S., & Ahamdzadeh, K. (2016). Factors affecting number of citations: a comprehensive review of the literature. Scientometrics, 107(3), 1195–1225.

    Article  Google Scholar 

  35. Uzzi, B., Mukherjee, S., Stringer, M., & Jones, B. (2013). Atypical combinations and scientific impact. Science, 342(6157), 468–472.

    Article  ADS  Google Scholar 

  36. van Raan, A. F. J. (2004). Sleeping beauties in science. Scientometrics, 59(3), 467–472.

    Article  Google Scholar 

  37. Wang, D., Song, C., & Barabsi, A. L. (2013). Quantifying long-term scientific impact. Science, 342(6154), 127–132.

    Article  ADS  Google Scholar 

  38. Yan, R., Huang, C., Tang, J., Zhang, Y., & Li, X. (2012). To better stand on the shoulder of giants. In Proceedings of the 12th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL ’12 (pp. 51–60). New York, NY: ACM.

    Chapter  Google Scholar 

  39. Yan, R., Tang, J., Liu, X., Shan, D., & Li, X. (2011). Citation count prediction: Learning to estimate future citations for literature. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM ’11 (pp. 1247–1252). New York, NY: ACM.

    Google Scholar 

  40. Zeng, A., Shen, Z., Zhou, J., Wu, J., Fan, Y., Wang, Y., & Stanley, H. E. (2017). The science of science: From the perspective of complex systems. Physics Reports, 714–715, 1–73.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Golosovsky, M. (2019). Prediction of Citation Dynamics of Individual Papers. In: Citation Analysis and Dynamics of Citation Networks. SpringerBriefs in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-28169-4_7

Download citation

Publish with us

Policies and ethics