Skip to main content

Self-similarity Analysis and Application of Network Traffic

  • Conference paper
  • First Online:
Mobile Computing, Applications, and Services (MobiCASE 2019)

Abstract

Network traffic prediction is not only an academic problem, but also a concern of industry and network performance department. Efficient prediction of network traffic is helpful for protocol design, traffic scheduling, detection of network attacks, etc. In this paper, we propose a network traffic prediction method based on the Echo State Network. In the first place we prove that the network traffic data are self-similar by means of the calculation of Hurst exponent of each traffic time series, which indicates that we can predict network traffic utilizing nonlinear time series models. Then Echo State Network is applied for network traffic forecasting. Furthermore, to avoid the weak-conditioned problem, grid search algorithm is used to optimize the reservoir parameters and coefficients. The dataset we perform experiments on are large-scale network traffic data at different time scale. They come from three provinces and are provided by ZTE Corporation. The result shows that our approach can predict network traffic efficiently, which is also a verification of the self-similarity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boutaba, R., Salahuddin, M.A., Limam, N., et al.: A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. J. Internet Serv. Appl. 9(1), 16 (2018)

    Article  Google Scholar 

  2. Zhou, B., He, D., Sun, Z.: Traffic Modeling and Prediction using ARIMA/GARCH Model. In: Nejat Ince, A., Topuz, E. (eds.) Modeling and Simulation Tools for Emerging Telecommunication Networks, pp. 101–121. Springer, Boston, MA (2006). https://doi.org/10.1007/0-387-34167-6_5

    Chapter  Google Scholar 

  3. Shu, Y., Yu, M., Yang, O., et al.: Wireless traffic modeling and prediction using seasonal ARIMA models. IEICE Trans. Commun. 88(10), 3992–3999 (2005)

    Article  Google Scholar 

  4. Babu, C.N., Reddy, B.E.: A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data. Appl. Soft Comput. 23, 27–38 (2014)

    Article  Google Scholar 

  5. Cortez, P., Rio, M., Rocha, M., et al.: Multi-scale Internet traffic forecasting using neural networks and time series methods. Expert. Syst. 29(2), 143–155 (2012)

    Google Scholar 

  6. Eswaradass, A., Sun, X.H., Wu, M.: Network bandwidth predictor (NBP): a system for online network performance forecasting. In: Proceedings of 6th IEEE International Symposium on Cluster Computing and the Grid (CCGRID), p. 4–pp. IEEE (2006)

    Google Scholar 

  7. Chabaa, S., Zeroual, A., Antari, J.: Identification and prediction of internet traffic using artificial neural networks. J. Int. Learn. Syst. Appl. 2(03), 147 (2010)

    Google Scholar 

  8. Li, Y., Liu, H., Yang, W., Hu, D., Xu, W.: Inter-data-center network traffic prediction with elephant flows. In: NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium, pp. 206–213. IEEE (2016)

    Google Scholar 

  9. Bermolen, P., Rossi, D.: Support vector regression for link load prediction. Comput. Netw. 53(2), 191–201 (2009)

    Article  Google Scholar 

  10. Nie, L., Jiang, D., Yu, S., et al.: Network traffic prediction based on deep belief network in wireless mesh backbone networks. In: 2017 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–5. IEEE (2017)

    Google Scholar 

  11. Poupart, P., Chen, Z., Jaini, P., et al.: Online flow size prediction for improved network routing. In: 2016 IEEE 24th International Conference on Network Protocols (ICNP), pp. 1–6. IEEE (2016)

    Google Scholar 

  12. Song, C., Havlin, S., Makse, H.A.: Self-similarity of complex networks. Nature 433(7024), 392 (2005)

    Article  Google Scholar 

  13. Angeles Serrano, M., Krioukov, D., Boguná, M.: Self-similarity of complex networks and hidden metric spaces. Phys. Rev. Lett. 100(7), 078701 (2008)

    Article  Google Scholar 

  14. Crovella, M.E., Bestavros, A.: Self-similarity in World Wide Web traffic: evidence and possible causes. IEEE/ACM Trans. Networking 5(6), 835–846 (1997)

    Article  Google Scholar 

  15. Park, K., Willinger, W.: Self-Similar Network Traffic and Performance Evaluation. Wiley, New York (2000)

    Book  Google Scholar 

  16. Brockwell, A.E.: Likelihood-based analysis of a class of generalized long-memory time series models. J. Time Ser. Anal. 28, 386–407 (2006). https://doi.org/10.1111/j.1467-9892.2006.00515.x

    Article  MathSciNet  MATH  Google Scholar 

  17. Witt, A., Malamud, B.D.: Quantification of long-range persistence in geophysical time series: conventional and benchmark-based improvement techniques. Surv. Geophys. 34, 541–651 (2013). https://doi.org/10.1007/s10712-012-9217-8

    Article  Google Scholar 

  18. Crovella, M., Krishnamurthy, B.: Internet measurement: infrastructure, traffic & applications. DBLP (2006)

    Google Scholar 

  19. Khayari, R.E.A., Sadre, R., Haverkort, B.R.: A validation of the pseudo self-similar traffic model. In: International Conference on Dependable Systems & Networks. IEEE (2002)

    Google Scholar 

  20. Barunik, J., Kristoufek, L.: On Hurst exponent estimation under heavy-tailed distributions. Phys. A Stat. Mech. Appl. 389, 3844–3855 (2010)

    Article  MathSciNet  Google Scholar 

  21. Alvarez-Ramirez, J., Echeverria, J.C., Rodriguez, E.: Performance of a high-dimensional R/S method for Hurst exponent estimation. Phys. A Stat. Mech. Appl. 387, 6452–6462 (2008)

    Article  Google Scholar 

  22. Bianchi, F.M., et al.: Prediction of telephone calls load using Echo State Network with exogenous variables. Neural Netw. 71, 204–213 (2015)

    Article  Google Scholar 

  23. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004). https://doi.org/10.1126/science.1091277

    Article  Google Scholar 

  24. Chatzis, S.P., Demiris, Y.: Echo State Gaussian process. IEEE Trans. Neural Netw. 22(9), 1435–1445 (2011)

    Article  Google Scholar 

Download references

Acknowledgement

This paper is supported by Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_0439).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianmu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Li, Q., Meng, S. (2019). Self-similarity Analysis and Application of Network Traffic. In: Yin, Y., Li, Y., Gao, H., Zhang, J. (eds) Mobile Computing, Applications, and Services. MobiCASE 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 290. Springer, Cham. https://doi.org/10.1007/978-3-030-28468-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28468-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28467-1

  • Online ISBN: 978-3-030-28468-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics