Skip to main content

Quantum-Chemical Insights from Interpretable Atomistic Neural Networks

  • Chapter
  • First Online:
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11700))

Abstract

With the rise of deep neural networks for quantum chemistry applications, there is a pressing need for architectures that, beyond delivering accurate predictions of chemical properties, are readily interpretable by researchers. Here, we describe interpretation techniques for atomistic neural networks on the example of Behler–Parrinello networks as well as the end-to-end model SchNet. Both models obtain predictions of chemical properties by aggregating atom-wise contributions. These latent variables can serve as local explanations of a prediction and are obtained during training without additional cost. Due to their correspondence to well-known chemical concepts such as atomic energies and partial charges, these atom-wise explanations enable insights not only about the model but more importantly about the underlying quantum-chemical regularities. We generalize from atomistic explanations to 3d space, thus obtaining spatially resolved visualizations which further improve interpretability. Finally, we analyze learned embeddings of chemical elements that exhibit a partial ordering that resembles the order of the periodic table. As the examined neural networks show excellent agreement with chemical knowledge, the presented techniques open up new venues for data-driven research in chemistry, physics and materials science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One 10(7), e0130140 (2015)

    Article  Google Scholar 

  2. Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Müller, K.R.: How to explain individual classification decisions. J. Mach. Learn. Res. 11, 1803–1831 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Bajorath, J.: Integration of virtual and high-throughput screening. Nat. Rev. Drug Discovery 1(11), 882 (2002)

    Article  Google Scholar 

  4. Bartók, A.P., Kondor, R., Csányi, G.: On representing chemical environments. Phys. Rev. B 87(18), 184115 (2013)

    Article  Google Scholar 

  5. Bartók, A.P., Payne, M.C., Kondor, R., Csányi, G.: Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104(13), 136403 (2010)

    Article  Google Scholar 

  6. Bartók, A.P., Csányi, G.: Gaussian approximation potentials: a brief tutorial introduction. Int. J. Quantum Chem. 115(16), 1051–1057 (2015)

    Article  Google Scholar 

  7. Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38(6), 3098 (1988)

    Article  Google Scholar 

  8. Behler, J.: Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 134(7), 074106 (2011)

    Article  Google Scholar 

  9. Behler, J., Parrinello, M.: Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98(14), 146401 (2007)

    Article  Google Scholar 

  10. Blum, L.C., Reymond, J.L.: 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J. Am. Chem. Soc. 131, 8732 (2009)

    Article  Google Scholar 

  11. Brockherde, F., Voigt, L., Li, L., Tuckerman, M.E., Burke, K., Müller, K.R.: Bypassing the Kohn-Sham equations with machine learning. Nat. Commun. 8, 872 (2017)

    Article  Google Scholar 

  12. Chen, H., et al.: Carbonophosphates: a new family of cathode materials for Li-Ion batteries identified computationally. Chem. Mater. 24(11), 2009–2016 (2012)

    Article  Google Scholar 

  13. Chmiela, S., Tkatchenko, A., Sauceda, H.E., Poltavsky, I., Schütt, K.T., Müller, K.R.: Machine learning of accurate energy-conserving molecular force fields. Sci. Adv. 3(5), e1603015 (2017)

    Article  Google Scholar 

  14. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  MathSciNet  Google Scholar 

  15. Duvenaud, D.K., et al.: Convolutional networks on graphs for learning molecular fingerprints. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) NIPS, pp. 2224–2232 (2015)

    Google Scholar 

  16. Eickenberg, M., Exarchakis, G., Hirn, M., Mallat, S.: Solid harmonic wavelet scattering: predicting quantum molecular energy from invariant descriptors of 3D electronic densities. In: Advances in Neural Information Processing Systems 30, pp. 6543–6552. Curran Associates, Inc., Long Beach (2017)

    Google Scholar 

  17. Faber, F.A., et al.: Prediction errors of molecular machine learning models lower than hybrid DFT error. J. Chem. Theory Comput. 13(11), 5255–5264 (2017)

    Article  Google Scholar 

  18. Gastegger, M., Behler, J., Marquetand, P.: Machine learning molecular dynamics for the simulation of infrared spectra. Chem. Sci. 8(10), 6924–6935 (2017)

    Article  Google Scholar 

  19. Gastegger, M., Schwiedrzik, L., Bittermann, M., Berzsenyi, F., Marquetand, P.: wACSF-weighted atom-centered symmetry functions as descriptors in machine learning potentials. J. Chem. Phys. 148(24), 241709 (2018)

    Article  Google Scholar 

  20. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Proceedings of the 34th International Conference on Machine Learning, pp. 1263–1272 (2017)

    Google Scholar 

  21. Hansen, K., et al.: Machine learning predictions of molecular properties: accurate many-body potentials and nonlocality in chemical space. J. Phys. Chem. Lett. 6, 2326 (2015)

    Article  Google Scholar 

  22. Hansen, K., et al.: Assessment and validation of machine learning methods for predicting molecular atomization energies. J. Chem. Theory Comput. 9(8), 3404–3419 (2013)

    Article  Google Scholar 

  23. Hautier, G., Jain, A., Mueller, T., Moore, C., Ong, S.P., Ceder, G.: Designing multielectron lithium-ion phosphate cathodes by mixing transition metals. Chem. Mater. 25(10), 2064–2074 (2013)

    Article  Google Scholar 

  24. Huo, H., Rupp, M.: Unified representation for machine learning of molecules and crystals. arXiv preprint. arXiv:1704.06439 (2017)

  25. Kang, K., Meng, Y.S., Bréger, J., Grey, C.P., Ceder, G.: Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311(5763), 977–980 (2006)

    Article  Google Scholar 

  26. Kearnes, S., McCloskey, K., Berndl, M., Pande, V., Riley, P.: Molecular graph convolutions: moving beyond fingerprints. J. Comput. Aided Mol. Des. 30(8), 595–608 (2016)

    Article  Google Scholar 

  27. Kindermans, P.J., et al.: Learning how to explain neural networks: PatternNet and PatternAttribution. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  28. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  MathSciNet  Google Scholar 

  29. Lee, C., Yang, W., Parr, R.G.: Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37(2), 785 (1988)

    Article  Google Scholar 

  30. von Lilienfeld, O.A.: First principles view on chemical compound space: gaining rigorous atomistic control of molecular properties. Int. J. Quantum Chem. 113(12), 1676–1689 (2013)

    Article  Google Scholar 

  31. Lubbers, N., Smith, J.S., Barros, K.: Hierarchical modeling of molecular energies using a deep neural network. J. Chem. Phys. 148(24), 241715 (2018)

    Article  Google Scholar 

  32. Montavon, G., et al.: Machine learning of molecular electronic properties in chemical compound space. New J. Phys. 15(9), 095003 (2013)

    Article  Google Scholar 

  33. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining nonlinear classification decisions with deep taylor decomposition. Pattern Recogn. 65, 211–222 (2017)

    Article  Google Scholar 

  34. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 73, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  35. Olivares-Amaya, R., et al.: Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics. Energy Environ. Sci. 4, 4849–4861 (2011)

    Article  Google Scholar 

  36. Pinheiro, P.O., Collobert, R.: From image-level to pixel-level labeling with convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1713–1721 (2015)

    Google Scholar 

  37. Pronobis, W., Tkatchenko, A., Müller, K.R.: Many-body descriptors for predicting molecular properties with machine learning: analysis of pairwise and three-body interactions in molecules. J. Chem. Theory Comput. 14(6), 2991–3003 (2018). https://doi.org/10.1021/acs.jctc.8b00110

    Article  Google Scholar 

  38. Ramakrishnan, R., Dral, P.O., Rupp, M., von Lilienfeld, O.A.: Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1, 140022 (2014)

    Article  Google Scholar 

  39. Ruddigkeit, L., Van Deursen, R., Blum, L.C., Reymond, J.L.: Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model. 52(11), 2864–2875 (2012)

    Article  Google Scholar 

  40. Rupp, M., Tkatchenko, A., Müller, K.R., Von Lilienfeld, O.A.: Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108(5), 058301 (2012)

    Article  Google Scholar 

  41. Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.R.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2660–2673 (2017)

    Article  MathSciNet  Google Scholar 

  42. Schütt, K.T., Arbabzadah, F., Chmiela, S., Müller, K.R., Tkatchenko, A.: Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 8, 13890 (2017)

    Article  Google Scholar 

  43. Schütt, K.T., Glawe, H., Brockherde, F., Sanna, A., Müller, K.R., Gross, E.: How to represent crystal structures for machine learning: towards fast prediction of electronic properties. Phys. Rev. B 89(20), 205118 (2014)

    Article  Google Scholar 

  44. Schütt, K.T., Kindermans, P.J., Sauceda, H.E., Chmiela, S., Tkatchenko, A., Müller, K.R.: SchNet: a continuous-filter convolutional neural network for modeling quantum interactions. In: Advances in Neural Information Processing Systems, vol. 30, pp. 992–1002 (2017)

    Google Scholar 

  45. Schütt, K.T., Sauceda, H.E., Kindermans, P.J., Tkatchenko, A., Müller, K.R.: SchNet - a deep learning architecture for molecules and materials. J. Chem. Phys. 148(24), 241722 (2018)

    Article  Google Scholar 

  46. Shoichet, B.K.: Virtual screening of chemical libraries. Nature 432(7019), 862 (2004)

    Article  Google Scholar 

  47. Sifain, A.E., et al.: Discovering a transferable charge assignment model using machine learning. J. Phys. Chem. Lett. 9, 4495–4501 (2018)

    Article  Google Scholar 

  48. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint. arXiv:1312.6034 (2013)

  49. Vollhardt, K.P.C., Schore, N.E.: Organic Chemistry; Palgrave Version: Structure and Function. Palgrave Macmillan, Basingstoke (2014)

    Book  Google Scholar 

  50. Xie, T., Grossman, J.C.: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120(14), 145301 (2018)

    Article  Google Scholar 

  51. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  52. Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network decisions: prediction difference analysis. arXiv preprint. arXiv:1702.04595 (2017)

Download references

Acknowledgements

This work was supported by the Federal Ministry of Education and Research (BMBF) for the Berlin Big Data Center BBDC (01IS14013A) and the Berlin Center for Machine Learning (01IS18037A). Additional support was provided by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement NO 792572. This research was supported by Institute for Information & Communications Technology Promotion and funded by the Korea government (MSIT) (No. 2017-0-00451, No. 2017-0-01779). A.T. acknowledges support from the European Research Council (ERC-CoG grant BeStMo).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexandre Tkatchenko or Klaus-Robert Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schütt, K.T., Gastegger, M., Tkatchenko, A., Müller, KR. (2019). Quantum-Chemical Insights from Interpretable Atomistic Neural Networks. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L., Müller, KR. (eds) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Lecture Notes in Computer Science(), vol 11700. Springer, Cham. https://doi.org/10.1007/978-3-030-28954-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28954-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28953-9

  • Online ISBN: 978-3-030-28954-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics