Skip to main content

Applications of Artificial Intelligence and Machine Learning in Viral Biology

  • Chapter
  • First Online:
Global Virology III: Virology in the 21st Century

Abstract

Present research efforts coupled with improved experimental techniques have provided voluminous genomic data. To convert this data into useful knowledge, novel tools for phenomenological and data driven modelling approaches are needed. This need has spurred initiation of a lot of rigorous efforts and has resulted in development of robust artificial intelligence (AI) and machine learning (ML) based models. While these paradigms individually and in synergistic combinations have been employed in various bioinformatics applications, the viral biology discipline has particularly benefitted most. These methodologies can efficiently handle single dimensional sequence to higher dimensional protein structures, microarray data, image and text data, experimental data emanating from spectroscopy, etc. Our analysis deals with ML tools like support vector machines (SVM), neural networks, deep neural networks, random forest, and decision tree. Analysis and interpretations are provided along with ample illustrations of their relevance to real-life applications. AI and evolutionary computing based tools like Genetic Algorithms, Ant Colony optimization, Particle swarm optimization and their applicability to viral biology problems are also discussed. Hybrid combination of these tools with ML techniques have resulted in simultaneous selection of informative attributes and high performance classification. This hybrid methodology has been discussed in detail.

In this chapter we describe the applications artificial intelligence and machine learning in virology. While there are AI has a multitude of tools, the focus would be on a specific aspect of Ai, known as evolutionary and heuristic computing. These are mainly employed as an alternative paradigm of optimization. They are mainly nature inspired algorithms. Although very simple and straightforward to use they have been deputed to solve several problems successfully in different domains of science and engineering. Machine learning on the other hand deals with a mountain of available data, recognize hidden patterns useful and interesting to upgrade it to structure and knowledge. We provide examples of the power of AI and Machine learning with the illustration of several examples from different subdomains of viral biology. We will also provide examples where the synergistic combination of AI and ML has a been found to be a very potent tool for solving several important problems in viral biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sousa MS, Mattoso ML, Ebecken NF. Data mining: a database perspective. WIT Transactions on Information and Communication Technologies; 1970 Jan 1;22.

    Google Scholar 

  2. Steinberg D, Colla P. CART: classification and regression trees. In Wu X, Kumar V, editors. The top ten algorithms in data mining. Knowledge and information systems (Boca Raton, FL). 2008 Jan 1;14(1):1-37. p. 179–201.

    Google Scholar 

  3. Gubler DJ. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev. 1998;11(3):480–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, Rothman AL, Ennis FA, Nisalak A. Dengue in the early febrile phase: viremia and antibody responses. J Infect Dis. 1997;176(2):322–30.

    Article  CAS  PubMed  Google Scholar 

  5. Halstead SB. Dengue. Lancet. 2007;370(9599):1644–52.

    Article  PubMed  Google Scholar 

  6. Kalayanarooj S, Vaughn DW, Nimmannitya S, Green S, Suntayakorn S, Kunentrasai N, Viramitrachai W, Ratanachu-Eke S, Kiatpolpoj S, Innis BL, Rothman AL. Early clinical and laboratory indicators of acute dengue illness. J Infect Dis. 1997;176(2):313–21.

    Article  CAS  PubMed  Google Scholar 

  7. Chadwick D, Arch B, Wilder-Smith A, Paton N. Distinguishing dengue fever from other infections on the basis of simple clinical and laboratory features: application of logistic regression analysis. J Clin Virol. 2006;35(2):147–53.

    Article  PubMed  Google Scholar 

  8. Tanner L, Schreiber M, Low JG, Ong A, Tolfvenstam T, Lai YL, Ng LC, Leo YS, Puong LT, Vasudevan SG, Simmons CP. Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness. PLoS Negl Trop Dis. 2008;2(3):e196.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Quinlan JR. C4. 5: programs for machine learning. Elsevier (San Mateo, CA); 2014 Jun 28.

    Google Scholar 

  10. Kothari R, Dong M. Decision trees for classification: a review and some new results. In Pattern recognition: from classical to modern approaches. World Scientific (Singapore). 2001. pp. 169–84.

    Chapter  Google Scholar 

  11. Solomon T, Ooi MH, Beasley DW, Mallewa M. West Nile encephalitis. BMJ. 2003;326(7394):865–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sampathkumar P. West Nile virus: epidemiology, clinical presentation, diagnosis, and prevention. In Mayo clinic proceedings 2003 Sep 1, vol. 78, no. 9, p. 1137–44, Elsevier.

    Google Scholar 

  13. Organ Procurement and Transplantation Network. http://www.optn.org/news/newsDetail.asp?id=303. Accessed on-line February 24, 2004.

  14. Kiberd BA, Forward K. Screening for West Nile virus in organ transplantation: a medical decision analysis. Am J Transplant. 2004;4(8):1296–301.

    Article  PubMed  Google Scholar 

  15. Hutchens TW, Yip TT. New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun Mass Spectrom. 1993;7(7):576–80.

    Article  CAS  Google Scholar 

  16. Merchant M, Weinberger SR. Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis. 2000;21(6):1164–77.

    Article  CAS  PubMed  Google Scholar 

  17. Jones MB, Krutzsch H, Shu H, Zhao Y, Liotta LA, Kohn EC, Petricoin EF III. Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics. 2002;2(1):76–84.

    Article  CAS  PubMed  Google Scholar 

  18. Bergman AC, Benjamin T, Alaiya A, Waltham M, Sakaguchi K, Franzén B, Linder S, Bergman T, Auer G, Appella E, Wirth PJ. Identification of gel-separated tumor marker proteins by mass spectrometry. Electrophoresis. 2000;21(3):679–86.

    Article  CAS  PubMed  Google Scholar 

  19. Alaiya AA, Franzén B, Fujioka K, Moberger B, Schedvins K, Silfversvärd C, Linder S, Auer G. Phenotypic analysis of ovarian carcinoma: polypeptide expression in benign, borderline and malignant tumors. Int J Cancer. 1997;73(5):678–82.

    Article  CAS  PubMed  Google Scholar 

  20. Thompson S, Turner GA. Elevated levels of abnormally-fucosylated haptoglobins in cancer sera. Br J Cancer. 1987;56(5):605–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adam BL, Qu Y, Davis JW, Ward MD, Clements MA, Cazares LH, Semmes OJ, Schellhammer PF, Yasui Y, Feng Z, Wright GL. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 2002;62(13):3609–14.

    CAS  PubMed  Google Scholar 

  22. Qu Y, Adam BL, Yasui Y, Ward MD, Cazares LH, Schellhammer PF, Feng Z, Semmes OJ, Wright GL. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem. 2002;48(10):1835–43.

    CAS  PubMed  Google Scholar 

  23. Petricoin EF III, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC, Liotta LA. Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002;359(9306):572–7.

    Article  CAS  PubMed  Google Scholar 

  24. Li J, Zhang Z, Rosenzweig J, Wang YY, Chan DW. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem. 2002;48(8):1296–304.

    CAS  PubMed  Google Scholar 

  25. Vlahou A, Schorge JO, Gregory BW, Coleman RL. Diagnosis of ovarian cancer using decision tree classification of mass spectral data. Biomed Res Int. 2003;2003(5):308–14.

    Google Scholar 

  26. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

    Article  Google Scholar 

  27. Liaw A, Wiener M. Classification and regression by random forest. R News. 2002;2(3):18–22.

    Google Scholar 

  28. Cutler DR, Edwards TC Jr, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ. Random forests for classification in ecology. Ecology. 2007;88(11):2783–92.

    Article  PubMed  Google Scholar 

  29. Matrosovich MN, Gambaryan AS, Teneberg S, Piskarev VE, Yamnikova SS, Lvov DK, Robertson JS, Karlsson KA. Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology. 1997;233(1):224–34.

    Article  CAS  PubMed  Google Scholar 

  30. Rogers GN, Paulson JC. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology. 1983;127(2):361–73.

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki Y. Gangliosides as influenza virus receptors. Variation of influenza viruses and their recognition of the receptor sialo-sugar chains. Prog Lipid Res. 1994;33(4):429–57.

    Article  CAS  PubMed  Google Scholar 

  32. Li OT, Chan MC, Leung CS, Chan RW, Guan Y, Nicholls JM, Poon LL. Full factorial analysis of mammalian and avian influenza polymerase subunits suggests a role of an efficient polymerase for virus adaptation. PLoS One. 2009;4(5):e5658.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Jagger BW, Memoli MJ, Sheng ZM, Qi L, Hrabal RJ, Allen GL, Dugan VG, Wang R, Digard P, Kash JC, Taubenberger JK. The PB2-E627K mutation attenuates viruses containing the 2009 H1N1 influenza pandemic polymerase. MBio. 2010;1(1):e00067–10.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Subbarao EK, London W, Murphy BR. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol. 1993;67(4):1761–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen GW, Chang SC, Mok CK, Lo YL, Kung YN, Huang JH, Shih YH, Wang JY, Chiang C, Chen CJ, Shih SR. Genomic signatures of human versus avian influenza A viruses. Emerg Infect Dis. 2006;12(9):1353–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eng CL, Tong JC, Tan TW. Predicting host tropism of influenza A virus proteins using random forest. BMC Med Genet. 2014;7(3):S1.

    Google Scholar 

  37. Dubchak I, Muchnik I, Holbrook SR, Kim SH. Prediction of protein folding class using global description of amino acid sequence. Proc Natl Acad Sci. 1995;92(19):8700–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dubchak I, Muchnik I, Mayor C, Dralyuk I, Kim SH. Recognition of a protein fold in the context of the SCOP classification. Proteins Struct Function Bioinform. 1999;35(4):401–7.

    Article  CAS  Google Scholar 

  39. Wei Y, Li J, Qing J, Huang M, Wu M, Gao F, Li D, Hong Z, Kong L, Huang W, Lin J. Discovery of novel hepatitis C virus NS5B polymerase inhibitors by combining random forest, multiple e-pharmacophore modeling and docking. PLoS One. 2016;11(2):e0148181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lavanchy D. The global burden of hepatitis C. Liver Int. 2009;29:74–81.

    Article  PubMed  Google Scholar 

  41. Sarrazin C, Zeuzem S. Resistance to direct antiviral agents in patients with hepatitis C virus infection. Gastroenterology. 2010;138(2):447–62.

    Article  CAS  PubMed  Google Scholar 

  42. Behrens SE, Tomei L, De Francesco R. Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO J. 1996;15(1):12–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moradpour D, Brass V, Bieck E, Friebe P, Gosert R, Blum HE, Bartenschlager R, Penin F, Lohmann V. Membrane association of the RNA-dependent RNA polymerase is essential for hepatitis C virus RNA replication. J Virol. 2004;78(23):13278–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ago H, Adachi T, Yoshida A, Yamamoto M, Habuka N, Yatsunami K, Miyano M. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Structure. 1999;7(11):1417–26.

    Article  CAS  PubMed  Google Scholar 

  45. Lesburg CA, Cable MB, Ferrari E, Hong Z, Mannarino AF, Weber PC. Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat Struct Mol Biol. 1999;6(10):937.

    Article  CAS  Google Scholar 

  46. Tagger A, Donato F, Ribero ML, Chiesa R, Portera G, Gelatti U, Albertini A, Fasola M, Boffetta P, Nardi G. Case-control study on hepatitis C virus (HCV) as a risk factor for hepatocellular carcinoma: the role of HCV genotypes and the synergism with hepatitis B virus and alcohol. Int J Cancer. 1999;81(5):695–9.

    Article  CAS  PubMed  Google Scholar 

  47. Tsukuma H, Hiyama T, Tanaka S, Nakao M, Yabuuchi T, Kitamura T, Nakanishi K, Fujimoto I, Inoue A, Yamazaki H, Kawashima T. Risk factors for hepatocellular carcinoma among patients with chronic liver disease. N Engl J Med. 1993;328(25):1797–801.

    Article  CAS  PubMed  Google Scholar 

  48. El-Serag HB, Mason AC. Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med. 1999;340(10):745–50.

    Article  CAS  PubMed  Google Scholar 

  49. Mas VR, Maluf DG, Archer KJ, Yanek K, Kong X, Kulik L, Freise CE, Olthoff KM, Ghobrial RM, McIver P, Fisher R. Genes involved in viral carcinogenesis and tumor initiation in hepatitis C virus-induced hepatocellular carcinoma. Mol Med. 2009;15(3–4):85–94.

    Article  CAS  PubMed  Google Scholar 

  50. Kane MJ, Price N, Scotch M, Rabinowitz P. Comparison of ARIMA and Random Forest time series models for prediction of avian influenza H5N1 outbreaks. BMC Bioinform. 2014;15(1):276.

    Article  Google Scholar 

  51. Zurada JM. Introduction to artificial neural systems. St. Paul: West Publishing Company; 1992.

    Google Scholar 

  52. Marcondes CB, Ximenes MD. Zika virus in Brazil and the danger of infestation by Aedes (Stegomyia) mosquitoes. Rev Soc Bras Med Trop. 2016;49(1):4–10.

    Article  PubMed  Google Scholar 

  53. Mlakar J, Korva M, Tul N, Popović M, Poljšak-Prijatelj M, Mraz J, Kolenc M, Resman Rus K, Vesnaver Vipotnik T, Fabjan Vodušek V, Vizjak A. Zika virus associated with microcephaly. N Engl J Med. 2016;374(10):951–8.

    Article  CAS  PubMed  Google Scholar 

  54. Driggers RW, Ho CY, Korhonen EM, Kuivanen S, Jääskeläinen AJ, Smura T, Rosenberg A, Hill DA, DeBiasi RL, Vezina G, Timofeev J. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N Engl J Med. 2016;374(22):2142–51.

    Article  CAS  PubMed  Google Scholar 

  55. Brasil P, Pereira JP Jr, Moreira ME, Ribeiro Nogueira RM, Damasceno L, Wakimoto M, Rabello RS, Valderramos SG, Halai UA, Salles TS, Zin AA. Zika virus infection in pregnant women in Rio de Janeiro. N Engl J Med. 2016;375(24):2321–34.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Akhtar M, Kraemer MU, Gardner L. A dynamic neural network model for real-time prediction of the Zika epidemic in the Americas bioRxiv 2018 Jan 1:466581.

    Google Scholar 

  57. Leontaritis IJ, Billings SA. Input-output parametric models for non-linear systems part I: deterministic non-linear systems. Int J Control. 1985;41(2):303–28.

    Article  Google Scholar 

  58. Narendra KS, Parthasarathy K. Identification and control of dynamical systems using neural networks. IEEE Trans Neural Netw. 1990;1(1):4–27.

    Article  CAS  PubMed  Google Scholar 

  59. Chen S, Billings SA, Grant PM. Non-linear system identification using neural networks. Int J Control. 1990;51(6):1191–214.

    Article  Google Scholar 

  60. Tersmette MJ, De Goede RE, Al BJ, Winkel IN, Gruters RA, Cuypers HT, Huisman HG, Miedema F. Differential syncytium-inducing capacity of human immunodeficiency virus isolates: frequent detection of syncytium-inducing isolates in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. J Virol. 1988;62(6):2026–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA. CC CKR5: a RANTES, MIP-1α, MIP-1ॆ receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996 Jun 28;272(5270):1955–8.

    Article  CAS  PubMed  Google Scholar 

  62. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996;86(3):367–77.

    Article  CAS  PubMed  Google Scholar 

  63. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Marzio PD, Marmon S, Sutton RE, Hill CM, Davis CB. Identification of a major co-receptor for primary isolates of HIV-1. Nature. 1996;381(6584):661–6.

    Article  CAS  PubMed  Google Scholar 

  64. Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, Peiper SC, Parmentier M, Collman RG, Doms RW. A dual-tropic primary HIV-1 isolate that uses fusin and the β-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell. 1996;85(7):1149–58.

    Article  CAS  PubMed  Google Scholar 

  65. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP, Paxton WA. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996 Jun;381(6584):667–73.

    Article  CAS  PubMed  Google Scholar 

  66. Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996;272(5263):872–7.

    Article  CAS  PubMed  Google Scholar 

  67. Chesebro B, Wehrly K, Nishio J, Perryman S. Mapping of independent V3 envelope determinants of human immunodeficiency virus type 1 macrophage tropism and syncytium formation in lymphocytes. J Virol. 1996;70(12):9055–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, Wu L, Mackay CR, LaRosa G, Newman W, Gerard N. The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell. 1996;85(7):1135–48.

    Article  CAS  PubMed  Google Scholar 

  69. Cocchi F, DeVico AL, Garzino-Demo A, Cara A, Gallo RC, Lusso P. The V3 domain of the HIV–1 gp120 envelope glycoprotein is critical for chemokine–mediated blockade of infection. Nat Med. 1996;2(11):1244–7.

    Article  CAS  PubMed  Google Scholar 

  70. Hwang SS, Boyle TJ, Lyerly HK, Cullen BR. Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science. 1991;253(5015):71–4.

    Article  CAS  PubMed  Google Scholar 

  71. Resch W, Hoffman N, Swanstrom R. Improved success of phenotype prediction of the human immunodeficiency virus type 1 from envelope variable loop 3 sequence using neural networks. Virology. 2001;288(1):51–62.

    Article  CAS  PubMed  Google Scholar 

  72. MacKay DJ. Bayesian interpolation. Neural Comput. 1992;4(3):415–47.

    Article  Google Scholar 

  73. Rodellar J, Alférez S, Acevedo A, Molina A, Merino A. Image processing and machine learning in the morphological analysis of blood cells. Int J Lab Hematol. 2018;40:46–53.

    Article  PubMed  Google Scholar 

  74. Angermueller C, Pärnamaa T, Parts L, Stegle O. Deep learning for computational biology. Mol Syst Biol. 2016;12(7):878.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ebrahimi M, Ahsan R. The first implication of image processing techniques on influenza a virus sub-typing based on HA/NA protein sequences, using convolutional deep neural Network. BioRxiv 2018 Jan 1:448159.

    Google Scholar 

  76. https://www.uniprot.org.

  77. Han Y, Kim D. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction. BMC Bioinform. 2017;18(1):585.

    Article  CAS  Google Scholar 

  78. Liu W, Meng X, Xu Q, Flower DR, Li T. Quantitative prediction of mouse class I MHC peptide binding affinity using support vector machine regression (SVR) models. BMC Bioinform. 2006 Dec;7(1):182.

    Article  CAS  Google Scholar 

  79. The World Bank. Reducing Climate-Sensitive Risks. 2014, Volume 1. Available online: http://documents.worldbank.org/curated/en/486511468167944431/Reducing-climate-sensitive-disease-risks. Accessed on 20 June 2017.

  80. Fuentes A, Yoon S, Kim S, Park D. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors. 2017;17(9):2022.

    Article  PubMed Central  Google Scholar 

  81. Krizhenvshky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional networks. InProceedings of the Conference Neural Information Processing Systems (NIPS). p. 1097–105.

    Google Scholar 

  82. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. 2014 Sep 4.

    Google Scholar 

  83. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition 2015. p. 1–9.

    Google Scholar 

  84. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition 2016. p. 770–8.

    Google Scholar 

  85. Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition 2017. p. 1492–500.

    Google Scholar 

  86. Holland JH. Genetic algorithms. Sci Am. 1992;267(1):66–73.

    Article  Google Scholar 

  87. Goldberg DE, Holland JH. Genetic algorithms and machine learning. Mach Learn. 1988;3(2):95–9.

    Article  Google Scholar 

  88. Michalewicz Z, Janikow CZ, Krawczyk JB. A modified genetic algorithm for optimal control problems. Comput Math Appl. 1992;23(12):83–94.

    Article  Google Scholar 

  89. Gallo RC, Sarin PS, Gelmann EP, Robert-Guroff M, Richardson E, Kalyanaraman VS, Mann D, Sidhu GD, Stahl RE, Zolla-Pazner S, Leibowitch J. Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science. 1983;220(4599):865–7.

    Article  CAS  PubMed  Google Scholar 

  90. Barré-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler-Blin C, Vézinet-Brun F, Rouzioux C, Rozenbaum W. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983;220(4599):868–71.

    Article  PubMed  Google Scholar 

  91. Jung A, Maier R, Vartanian JP, Bocharov G, Jung V, Fischer U, Meese E, Wain-Hobson S, Meyerhans A. Recombination: multiply infected spleen cells in HIV patients. Nature. 2002;418(6894):144.

    Article  CAS  PubMed  Google Scholar 

  92. Bocharov G, Ford NJ, Edwards J, Breinig T, Wain-Hobson S, Meyerhans A. A genetic-algorithm approach to simulating human immunodeficiency virus evolution reveals the strong impact of multiply infected cells and recombination. J Gen Virol. 2005;86(11):3109–18.

    Article  CAS  PubMed  Google Scholar 

  93. De Clercq E. Emerging anti-HIV drugs. Expert Opin Emerg Drugs. 2005;10(2):241–74.

    Article  PubMed  Google Scholar 

  94. Mekouar K, Mouscadet JF, Desmaële D, Subra F, Leh H, Savouré D, Auclair C, d’Angelo J. Styrylquinoline derivatives: a new class of potent HIV-1 integrase inhibitors that block HIV-1 replication in CEM cells. J Med Chem. 1998;41(15):2846–57.

    Article  CAS  PubMed  Google Scholar 

  95. Goudarzi N, Goodarzi M, Chen T. QSAR prediction of HIV inhibition activity of styrylquinoline derivatives by genetic algorithm coupled with multiple linear regressions. Med Chem Res. 2012;21(4):437–43.

    Article  CAS  Google Scholar 

  96. Leonard JT, Roy K. Exploring molecular shape analysis of styrylquinoline derivatives as HIV-1 integrase inhibitors. Eur J Med Chem. 2008;43(1):81–92.

    Article  CAS  PubMed  Google Scholar 

  97. Cong Y, Li BK, Yang XG, Xue Y, Chen YZ, Zeng Y. Quantitative structure–activity relationship study of influenza virus neuraminidase A/PR/8/34 (H1N1) inhibitors by genetic algorithm feature selection and support vector regression. Chemom Intell Lab Syst. 2013;127:35–42.

    Article  CAS  Google Scholar 

  98. Williams MA, Lew W, Mendel DB, Tai CY, Escarpe PA, Laver WG, Stevens RC, Kim CU. Structure-activity relationships of carbocyclic influenza neuraminidase inhibitors. Bioorg Med Chem Lett. 1997;7(14):1837–42.

    Article  CAS  Google Scholar 

  99. Kim CU, Lew W, Williams MA, Wu H, Zhang L, Chen X, Escarpe PA, Mendel DB, Laver WG, Stevens RC. Structure− activity relationship studies of novel carbocyclic influenza neuraminidase inhibitors. J Med Chem. 1998;41(14):2451–60.

    Article  CAS  PubMed  Google Scholar 

  100. Lew W, Wu H, Mendel DB, Escarpe PA, Chen X, Laver WG, Graves BJ, Kim CU. A new series of C3-aza carbocyclic influenza neuraminidase inhibitors: synthesis and inhibitory activity. Bioorg Med Chem Lett. 1998;8(23):3321–4.

    Article  CAS  PubMed  Google Scholar 

  101. Lew W, Wu H, Chen X, Graves BJ, Escarpe PA, MacArthur HL, Mendel DB, Kim CU. Carbocyclic influenza neuraminidase inhibitors possessing a C3-cyclic amine side chain: synthesis and inhibitory activity. Bioorg Med Chem Lett. 2000;10(11):1257–60.

    Article  CAS  PubMed  Google Scholar 

  102. Lew W, Williams MA, Mendel DB, Escarpe PA, Kim CU. C3-Thia and C3-carba isosteres of a carbocyclic influenza neuraminidase inhibitor,(3R, 4R, 5S)-4-acetamido-5-amino-3-propoxyl-1-cyclohexene-1-carboxylic acid. Bioorg Med Chem Lett 1997;7(14):1843–1846, C3-Thia and C3-carba isosteres of a carbocyclic influenza neuraminidase inhibitor, (3R,4R,5S)-4-acetamido-5-amino-3-propoxyl-1-cyclohexene-1-carboxylic acid.

    Article  CAS  Google Scholar 

  103. Zhang L, Williams MA, Mendel DB, Escarpe PA, Kim CU. Synthesis and activity of C2-substituted analogs of influenza neuraminidase inhibitor GS 4071. Bioorg Med Chem Lett. 1997;7(14):1847–50.

    Article  CAS  Google Scholar 

  104. Zhang L, Williams MA, Mendel DB, Escarpe PA, Chen X, Wang KY, Graves BJ, Lawton G, Kim CU. Synthesis and evaluation of 1, 4, 5, 6-tetrahydropyridazine derivatives as influenza neuraminidase inhibitors. Bioorg Med Chem Lett. 1999;9(13):1751–6.

    Article  CAS  PubMed  Google Scholar 

  105. Liu AL, Wang HD, Lee SM, Wang YT, Du GH. Structure–activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg Med Chem. 2008;16(15):7141–7.

    Article  CAS  PubMed  Google Scholar 

  106. Todeschini R, Consonni V. Handbook of molecular descriptors. Wiley (Weinheim, Germany); 2008.

    Google Scholar 

  107. Wang C, Lefkowitz EJ. Genomic multiple sequence alignments: refinement using a genetic algorithm. BMC Bioinform. 2005;6(1):200.

    Article  CAS  Google Scholar 

  108. Hirosawa M, Totoki Y, Hoshida M, Ishikawa M. Comprehensive study on iterative algorithms of multiple sequence alignment. Bioinformatics. 1995;11(1):13–8.

    Article  CAS  Google Scholar 

  109. Nicholas HB Jr, Ropelewski AJ, Deerfield DW. Strategies for multiple sequence alignment. BioTechniques. 2002;32(3):572–91.

    Article  CAS  PubMed  Google Scholar 

  110. Notredame C, Holm L, Higgins DG. COFFEE: an objective function for multiple sequence alignments. Bioinformatics (Oxford, England). 1998;14(5):407–22.

    Article  CAS  Google Scholar 

  111. Notredame C, Higgins DG, Heringa J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000;302(1):205–17.

    Article  CAS  PubMed  Google Scholar 

  112. Thomsen R, Boomsma W. Multiple sequence alignment using SAGA: investigating the effects of operator scheduling, population seeding, and crossover operators. In Workshops on applications of evolutionary computation 2004 Apr 5, p. 113–22. Springer, Berlin, Heidelberg.

    Google Scholar 

  113. Calonaci C, Chiacchio F, Pappalardo F. Optimal vaccination schedule search using genetic algorithm over MPI technology. BMC Med Inform Decis Mak. 2012;12(1):129.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Pappalardo F, Lollini PL, Castiglione F, Motta S. Modeling and simulation of cancer immunoprevention vaccine. Bioinformatics. 2005;21(12):2891–7.

    Article  CAS  PubMed  Google Scholar 

  115. Pappalardo F, Forero IM, Pennisi M, Palazon A, Melero I, Motta S. SimB16: modeling induced immune system response against B16-melanoma. PLoS One. 2011;6(10):e26523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pappalardo F, Halling-Brown MD, Rapin N, Zhang P, Alemani D, Emerson A, Paci P, Duroux P, Pennisi M, Palladini A, Miotto O. ImmunoGrid, an integrative environment for large-scale simulation of the immune system for vaccine discovery, design and optimization. Brief Bioinform. 2009;10(3):330–40.

    Article  CAS  PubMed  Google Scholar 

  117. Pennisi M, Catanuto R, Pappalardo F, Motta S. Optimal vaccination schedules using simulated annealing. Bioinformatics. 2008;24(15):1740–2.

    Article  CAS  PubMed  Google Scholar 

  118. Halling-Brown M, Pappalardo F, Rapin N, Zhang P, Alemani D, Emerson A, Castiglione F, Duroux P, Pennisi M, Miotto O, Churchill D. ImmunoGrid: towards agent-based simulations of the human immune system at a natural scale. Philos Trans A Math Phys Eng Sci. 2010;368(1920):2799–815.

    Article  PubMed  Google Scholar 

  119. Pennisi M, Pappalardo F, Palladini A, Nicoletti G, Nanni P, Lollini PL, Motta S. Modeling the competition between lung metastases and the immune system using agents. BMC Bioinform. 2010;11(7):S13. BioMed Central.

    Article  Google Scholar 

  120. Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies. In Proceedings of the first European conference on artificial life 1992 Dec, vol. 142, p. 134–42.

    Google Scholar 

  121. Dorigo M, Gambardella LM. Ant colonies for the travelling salesman problem. Biosystems. 1997;43(2):73–81.

    Article  CAS  PubMed  Google Scholar 

  122. Bonabeau E, Marco DD, Dorigo M, Theraulaz G. Swarm intelligence: from natural to artificial systems: Oxford University Press (New York); 1999.

    Google Scholar 

  123. Pemula AK, Krishnan S. Temporal analysis of molecular changes in shrimp (Penaeus vannamei) tissues with respect to white spot disease. J Food Sci Technol. 2015;52(11):7236–44.

    Article  CAS  Google Scholar 

  124. Verbruggen B, Bickley L, van Aerle R, Bateman K, Stentiford G, Santos E, Tyler C. Molecular mechanisms of white spot syndrome virus infection and perspectives on treatments. Viruses. 2016;8(1):23.

    Article  PubMed Central  CAS  Google Scholar 

  125. Solís-Lucero G, Manoutcharian K, Hernández-López J, Ascencio F. Injected phage-displayed-VP28 vaccine reduces shrimp Litopenaeus vannamei mortality by white spot syndrome virus infection. Fish Shellfish Immunol. 2016;55:401–6.

    Article  PubMed  CAS  Google Scholar 

  126. Oprea TI, Matter H. Integrating virtual screening in lead discovery. Curr Opin Chem Biol. 2004;8(4):349–58.

    Article  CAS  PubMed  Google Scholar 

  127. Korb O, Stützle T, Exner TE. PLANTS: application of ant colony optimization to structure-based drug design. In International workshop on ant colony optimization and swarm intelligence 2006 Sep 4, Springer, Berlin, Heidelberg, p. 247–58.

    Chapter  Google Scholar 

  128. Tanaka H, Takashima H, Ubasawa M, Sekiya K, Nitta I, Baba M, Shigeta S, Walker RT, De Clercq E, Miyasaka T. Structure-activity relationships of 1-[(2-hydroxyethoxy) methyl]-6-(phenylthio) thymine analogs: effect of substitutions at the C-6 phenyl ring and at the C-5 position on anti-HIV-1 activity. J Med Chem. 1992;35(2):337–45.

    Article  CAS  PubMed  Google Scholar 

  129. Tanaka H, Takashima H, Ubasawa M, Sekiya K, Nitta I, Baba M, Shigeta S, Walker RT, De Clercq E, Miyasaka T. Synthesis and antiviral activity of deoxy analogs of 1-[(2-hydroxyethoxy) methyl]-6-(phenylthio) thymine (HEPT) as potent and selective anti-HIV-1 agents. J Med Chem. 1992;35(25):4713–9.

    Article  CAS  PubMed  Google Scholar 

  130. Gayen S, Debnath B, Samanta S, Jha T. QSAR study on some anti-HIV HEPT analogues using physicochemical and topological parameters. Bioorg Med Chem. 2004;12(6):1493–503.

    Article  CAS  PubMed  Google Scholar 

  131. De Clercq E. Perspectives of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection. Farmaco. 1999;54(1–2):26–45.

    Article  PubMed  Google Scholar 

  132. Hansch C, Zhang L. QSAR of HIV inhibitors. Bioorg Med Chem Lett. 1992;2(9):1165–9.

    Article  CAS  Google Scholar 

  133. Bajaj S, Sambi SS, Madan AK. Topochemical model for prediction of anti-HIV activity of HEPT analogs. Bioorg Med Chem Lett. 2005;15(2):467–9.

    Article  CAS  PubMed  Google Scholar 

  134. Jalali-Heravi M, Parastar F. Use of artificial neural networks in a QSAR study of anti-HIV activity for a large group of HEPT derivatives. J Chem Inf Comput Sci. 2000;40(1):147–54.

    Article  CAS  PubMed  Google Scholar 

  135. Garg R, Gupta SP, Gao H, Babu MS, Debnath AK, Hansch C. Comparative quantitative structure− activity relationship studies on anti-HIV drugs. Chem Rev. 1999;99(12):3525–602.

    Article  CAS  PubMed  Google Scholar 

  136. Kireev DB, Chrétien JR, Grierson DS, Monneret C. A 3D QSAR study of a series of HEPT analogues: the influence of conformational mobility on HIV-1 reverse transcriptase inhibition. J Med Chem. 1997;40(26):4257–64.

    Article  CAS  PubMed  Google Scholar 

  137. Hannongbua S, Nivesanond K, Lawtrakul L, Pungpo P, Wolschann P. 3D-quantitative structure− activity relationships of HEPT derivatives as HIV-1 reverse transcriptase inhibitors, based on Ab initio calculations. J Chem Inf Comput Sci. 2001;41(3):848–55.

    Article  CAS  PubMed  Google Scholar 

  138. Bazoui H, Zahouily M, Boulajaaj S, Sebti S, Zakarya D. QSAR for anti-HIV activity of HEPT derivatives. SAR QSAR Environ Res. 2002;13(6):567–77.

    Article  CAS  PubMed  Google Scholar 

  139. Douali L, Villemin D, Cherqaoui D. Neural networks: accurate nonlinear QSAR model for HEPT derivatives. J Chem Inf Comput Sci. 2003;43(4):1200–7.

    Article  CAS  PubMed  Google Scholar 

  140. Akhlaghi Y, Kompany-Zareh M. Application of radial basis function networks and successive projections algorithm in a QSAR study of anti-HIV activity for a large group of HEPT derivatives. J Chemometr. 2006;20(1–2):1–2.

    Article  CAS  Google Scholar 

  141. Gaudio AC, Montanari CA. HEPT derivatives as non-nucleoside inhibitors of HIV-1 reverse transcriptase: QSAR studies agree with the crystal structures. J Comput Aided Mol Des. 2002;16(4):287–95.

    Article  CAS  PubMed  Google Scholar 

  142. Luco JM, Ferretti FH. QSAR based on multiple linear regression and PLS methods for the anti-HIV activity of a large group of HEPT derivatives. J Chem Inf Comput Sci. 1997;37(2):392–401.

    Article  CAS  PubMed  Google Scholar 

  143. Zare-shahabadi V, Abbasitabar F. Application of ant colony optimization in development of models for prediction of anti-HIV-1 activity of HEPT derivatives. J Comput Chem. 2010;31(12):2354–62.

    CAS  PubMed  Google Scholar 

  144. Shamsipur M, Zare-Shahabadi V, Hemmateenejad B, Akhond M. Combination of ant colony optimization with various local search strategies. A novel method for variable selection in multivariate calibration and QSPR study. QSAR Comb Sci. 2009;28(11–12):1263–75.

    Article  CAS  Google Scholar 

  145. Sammut C, Webb GI, editors. Encyclopedia of machine learning. Springer Science & Business Media (New York); 2011 Mar 28.

    Google Scholar 

  146. Eberhart RC, Hu X. Human tremor analysis using particle swarm optimization. In Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406) 1999, vol. 3, p. 1927–30. IEEE.

    Google Scholar 

  147. Neshat M, Sargolzaei M, Nadjaran Toosi A, Masoumi A. Hepatitis disease diagnosis using hybrid case based reasoning and particle swarm optimization. ISRN Artificial Intelligence 2012 Jul 8;2012.

    Google Scholar 

  148. Lisboa PJ, Ifeachor EC, Szczepaniak PS, editors. Artificial neural networks in biomedicine: Springer Science and Business Media (Tyne & Wear, England); 2000.

    Google Scholar 

  149. Neshat M, Yaghobi M. FESHDD: fuzzy expert system for hepatitis B diseases diagnosis. In 2009 Fifth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control 2009 Sep.

    Google Scholar 

  150. Neshat M, Yaghobi M. Designing a fuzzy expert system of diagnosing the hepatitis B intensity rate and comparing it with adaptive neural network fuzzy system. In Proceedings of the World Congress on Engineering and Computer Science 2009 Oct, vol. 2, p. 797–802.

    Google Scholar 

  151. Greig J, du Cros P, Klarkowski D, Mills C, Jørgensen S, Harrigan PR, O’Brien DP. Viral load testing in a resource-limited setting: quality control is critical. J Int AIDS Soc. 2011;14(1):23.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Calmy A, Ford N, Hirschel B, Reynolds SJ, Lynen L, Goemaere E, De La Vega FG, Perrin L, Rodriguez W. HIV viral load monitoring in resource-limited regions: optional or necessary? Clin Infect Dis. 2007;44(1):128–34.

    Article  PubMed  Google Scholar 

  153. Kamalan K, Jawahar PM. Particle swarm optimization based estimation of HIV-1 viral load in resource limited settings. Afr J Microbiol Res. 2013;7(20):2297–304.

    Article  Google Scholar 

  154. Ren S, He K, Girshick R, Sun J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems 2015. p. 91–9.

    Google Scholar 

  155. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC. Ssd: single shot multibox detector. In European conference on computer vision 2016 Oct 8. Springer, Cham, p. 21–37.

    Chapter  Google Scholar 

  156. Dai J, Li Y, He K, Sun J. R-fcn: Object detection via region-based fully convolutional networks. InAdvances in neural information processing systems 2016, p. 379–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayaraman Valadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Modak, S., Sehgal, D., Valadi, J. (2019). Applications of Artificial Intelligence and Machine Learning in Viral Biology. In: Shapshak, P., et al. Global Virology III: Virology in the 21st Century. Springer, Cham. https://doi.org/10.1007/978-3-030-29022-1_1

Download citation

Publish with us

Policies and ethics