Skip to main content

A High Resolution and Low Jitter 5-Bit Flash TDC Architecture for High Speed Intelligent Systems

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1037))

Included in the following conference series:

Abstract

This work represents a high resolution and low jitter 5-bit Flash Time to Digital converter (TDC) which concurrently achieves low power and improved periodic jitter. To minimize quantization error τQ and attain high resolution, equally spaced flash TDC is calibrated with least mean square algorithm (LMS). The adaptive filtration minimizes the error which minimizes the delay variation among the delay cells of flash TDC. Further slow and accurate 5 bit SAR TDC is used to calibrate the proposed TDC. The implementation of TDC is done in 0.18um digital CMOS logic technology. The results show the resolution of measurement is 6 ps. The dynamic power consumption is 1.98 mW at 25 °C temperature and 1.8 V core voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henzler, S: Time-to-digital converter basics, 1st edn., pp 5–18. Springer, Dordrecht (2010)

    Chapter  Google Scholar 

  2. Wang, H., Dai, F.F.: A 14-Bit, 1-ps resolution, two-step ring and 2D Vernier TDC in 130 nm CMOS technology. In: Proceedings on 43rd IEEE European Solid State Circuits Conference, Leuven, Belgium, pp. 143–146 (2017)

    Google Scholar 

  3. Lu, P., Wu, Y., Andreani, P.: A 2.2-ps two-dimensional gated-vernier time-to-digital converter with digital calibration. IEEE Trans. Circ. Syst. II Express. Briefs. 63(11), 1019–1023 (2016)

    Google Scholar 

  4. Rashidzadeh, R., Ahmadi, M., Miller, W.C.: An all-digital self calibration method for a Vernier-based time-to-digital converter. IEEE Trans. Instrum. Meas. 59(2), 463–469 (2010)

    Article  Google Scholar 

  5. Seong, T., Lee, Y., Yoo, S., Choi, J.: A -242 dB FOM and -75dBc-reference-spur ring-DCO-based all-digital PLL using a fast phase-error correction technique and a low-power optimal-threshold TDC. In: Proceedings on IEEE International Solid-State Circuits, San Francisco, USA, pp. 396–398 (2018)

    Google Scholar 

  6. Rashdan, M.: Multi-step and high-resolution Vernier-based TDC architecture. In: Proceedings on 29th International Conference on Microelectronics (ICM), Beirut, Lebanon (2017)

    Google Scholar 

  7. Ito, S., Nishimura, S., Kobayashi, H., Uemori, S., Takai, Y.T.N., Yamaguchi, T.J., Niitsu, K.: Stochastic TDC architecture with self-calibration. In: Proceedings on IEEE Asia Pacific Conference on Circuits and Systems, pp. 1027–1030 (2010)

    Google Scholar 

  8. Ozawa, Y., Ida, T., Sakurai, S., Rino, R.J., Kobayashi, T.H., Shiota, R.: SAR TDC architecture for one-shot timing measurement with full digital implementation. In: International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen, China, pp. 462–467 (2017)

    Google Scholar 

  9. Jiang, R., Li, C., Yang, M.C., Kobayashi, H., Ozawa, Y., Tsukiji, N., Hirano, M., Shiota, R., Hatayama, K.: Successive approximation time-to-digital converter with vernier-level resolution. In: Proceedings on IEEE 21st International Mixed-Signal Testing Workshop (IMSTW), Sant Feliu de Guixols, Spain, pp. 1–6 (2016)

    Google Scholar 

  10. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  11. Marelli, D., Mahata, K., Minyue, F.: Linear LMS compensation for timing mismatch in time-interleaved ADCs. IEEE Trans. Circuits Syst. I Regul. Pap. 56(11), 2476–2486 (2009)

    Article  MathSciNet  Google Scholar 

  12. Molaei, H., Hajsadeghi, K.: A 1.6 ps 7 b time to digital converter in 0.18 µm CMOS technology. Microelectron. J. 67, 120–127 (2017)

    Article  Google Scholar 

  13. Ko, C.-T., Punn, K.-P., Gothenberg, A.: A 5-ps Vernier sub-ranging time-to-digital converter with DNL calibration. Microelectron. J. 46, 1469–1480 (2015)

    Article  Google Scholar 

  14. Narku-Tetteh, N., Titriku, A., Palermo, S.: A 15b, sub-10 ps resolution, low dead time, wide range two-stage TDC. In: Proceedings on IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS), TX, USA, pp. 13–16 (2014)

    Google Scholar 

  15. Ragab, K.O., Mostafa, H., Eladawy, A.: A novel 10-bit 2.8-mW TDC design using SAR with continuous disassembly algorithm. IEEE Trans. Cir. Syst. II Express Briefs 63(10), 909–913 (2016)

    Google Scholar 

  16. Ping, L., Ying, W., Andreani, P.: A 2.2-ps two-dimensional gated-vernier time-to-digital converter with digital calibration. IEEE Trans. Circ. Syst. II Express Briefs 63(16), 1019–1023 (2016)

    Google Scholar 

Download references

Acknowledgments

The SMDP-C2SD provides a financial aid for execution of project. The project is being acknowledged gratefully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sahani, J.K., Singh, A., Agarwal, A. (2020). A High Resolution and Low Jitter 5-Bit Flash TDC Architecture for High Speed Intelligent Systems. In: Bi, Y., Bhatia, R., Kapoor, S. (eds) Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing, vol 1037. Springer, Cham. https://doi.org/10.1007/978-3-030-29516-5_20

Download citation

Publish with us

Policies and ethics