Skip to main content

Characterizing High Level LIGO Gravitational Wave Data Using Deep Learning

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1037))

Included in the following conference series:

  • 1661 Accesses

Abstract

This study aims to build a CNN based classifier for characterizing LIGO gravitational wave data for transient noise analysis. The databank was generated from LIGO’s open source archives and a model was created to flag commonly occurring erroneous noise waveforms. The model developed was able to categorize incoming noise with an accuracy of >99% and also gave insights into preprocessing techniques that can be performed for best performance. This study may be extended to various fields of applied science where data size is colossal and interpretation is usually tedious and often ambiguous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. George, D., Shen, H., Huerta, E.: Deep Transfer Learning: A new deep learning glitch classification method for advanced LIGO (2018). arXiv preprint arXiv:1706.07446

  2. Aasi, J., et al.: The LIGO Scientific Collaboration, Classical and Quantum Gravity 32 074001 (Preprint 1411.4547) (2015)

    Google Scholar 

  3. The LIGO Scientific Collaboration and The Virgo Collaboration 2016 ArXiv e-prints (Preprint 1602.03838) (2015)

    Google Scholar 

  4. Abbott, B.P., et al.: LIGO scientific collaboration and virgo collaboration. Phys. Rev. Lett. 116(6), 061102 (2016). http://link.aps.org/doi/10.1103/PhysRevLett.116.061102

    Article  MathSciNet  Google Scholar 

  5. Abbott, B.P., et al.: LIGO scientific collaboration and virgo collaboratio. Phys. Rev. Lett. 116(24), 241103 (2016). http://link.aps.org/doi/10.1103/PhysRevLett.116.241103

    Article  Google Scholar 

  6. Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., et al.: Phys. Rev. Lett. 118(22), 221101 (2017). https://link.aps.org/doi/10.1103/PhysRevLett.118.221101

    Article  Google Scholar 

  7. Unnikrishnan, C.S.: IndIGO and LIGO-India: scope and plans for gravitational wave research and precision metrology in India. Int. J. Mod. Phys. D 22(01), 1341010 (2013)

    Article  Google Scholar 

  8. Vallisneri, M., et al.: The LIGO open science center. In: Proceedings of the 10th LISA Symposium, University of Florida, Gainesville, arxiv:1410.4839, 18–23 May (2014)

    Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 1, 1097–1105 (2012)

    Google Scholar 

  10. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814. Haifa, Israel, 21–24 June (2010)

    Google Scholar 

  11. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  12. LeCun, Y.A., Bottou, L., Orr, G.B., M¨uller, K.-R.: Efficient backprop. In: Montavon, G., Orr, G.B., M¨uller, K.-R. (eds.) Neural Networks: Tricks of the Trade, 2nd edn., pp. 9–48. Springer, Berlin Heidelberg (2012)

    Google Scholar 

  13. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks, advances in neural information processing systems. In: 2015 Twenty Eight International Conference on Neural Information Processing Systems, pp. 2377–2385. Montreal, Canada (2015)

    Google Scholar 

  14. Guo, T., et al.: Simple convolutional neural network on image classification. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA) (2017). https://doi.org/10.1109/icbda.2017.8078730

  15. Ciresan, D.C., Meier, U., Masci, J., Maria Gambardella, L., Schmidhuber, J.: Flexible, high performance convolutional neural networks for image classification. In: Proceedings of International Joint Conference on Artificial Intelligence, pp. 1234–1242. Barcelona, Spain (2011)

    Google Scholar 

  16. Liu, S.W., Huang, J.H., Sung, J.C., Lee, C.C.: Detection of cracks using neural networks and computational mechanics. Comput. Meth. Appl. Mech. Eng. 191(25–26), 2831–2845 (2002)

    Article  Google Scholar 

  17. Arivazhagan, S., Shebiah, N., Nidhyanandhan, S., Ganesan, L.: Fruit recognition using color and texture features. J. Emerg. Trends Comput. Inf. Sci. 1(2), 90–94 (2010)

    Google Scholar 

  18. Cires¸an, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: Flexible, high performance convolutional neural networks for image classification. In: Twenty-Second International Joint Conference on Artificial Intelligence, pp. 1237–1242. AAAI Press (2011)

    Google Scholar 

  19. Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., M¨uller, K.-R. (eds.) Neural Networks: Tricks of the Trade, 2nd edn., pp. 421–36. Springer, Berlin Heidelberg (2012)

    Google Scholar 

  20. Bengio, Y., Goodfellow, I.J., Courville, A.: Deep Learning, An MIT Press book. http://www.deeplearningbook.org. Accessed July 2016

  21. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  22. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  23. George, D., Huerta, E.: Deep learning for real-time gravitational wave detection and parameter estimation: results with advanced LIGO data. Phys. Lett. B 778, 64–70 (2017). https://doi.org/10.1016/j.physletb.2017.12.053

    Article  Google Scholar 

  24. The LIGO Scientific Collaboration and the Virgo Collaboration 2016 ArXiv e-prints (Preprint 1602.03844) (2016)

    Google Scholar 

  25. The LIGO Scientific Collaboration and Abbott B P 2016 ArXiv e-prints (Preprint 1602.03845) (2016)

    Google Scholar 

  26. George, D., Shen, H., Huerta, E.: Classification and unsupervised clustering of LIGO data with deep transfer learning. Phys. Rev. D 97(10), 101501 (2018). https://doi.org/10.1103/physrevd.97.101501

    Article  Google Scholar 

Download references

Acknowledgment

This research has made use of data, software and/or web tools obtained from the Gravitational Wave Open Science Center (https://www.gw-openscience.org), a service of LIGO Laboratory, the LIGO Scientific Collaboration and the Virgo Collaboration. LIGO is funded by the U.S. National Science Foundation. Virgo is funded by the French Centre National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale della Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by Polish and Hungarian institutes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lavika Goel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goel, L., Mukherjee, J. (2020). Characterizing High Level LIGO Gravitational Wave Data Using Deep Learning. In: Bi, Y., Bhatia, R., Kapoor, S. (eds) Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing, vol 1037. Springer, Cham. https://doi.org/10.1007/978-3-030-29516-5_64

Download citation

Publish with us

Policies and ethics