Skip to main content

Software Defect Prediction Using a Hybrid Model Based on Semantic Features Learned from the Source Code

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2019)

Abstract

Software defect prediction has extensive applicability thus being a very active research area in Search-Based Software Engineering. A high proportion of the software defects are caused by violated couplings. In this paper, we investigate the relevance of semantic coupling in assessing the software proneness to defects. We propose a hybrid classification model combining Gradual Relational Association Rules with Artificial Neural Networks, which detects the defective software entities based on semantic features automatically learned from the source code. The experiments we have performed led to results that confirm the interplay between conceptual coupling and software defects proneness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bavota, G., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., De Lucia, A.: An empirical study on the developers perception of software coupling. In: Proceedings of the 2013 International Conference on Software Engineering, ICSE 2013, pp. 692–701. IEEE Press, Piscataway (2013)

    Google Scholar 

  2. Bishnu, P., Bhattacherjee, V.: Software fault prediction using quad tree-based k-means clustering algorithm. IEEE Trans. Knowl. Data Eng. 24(6), 1146–1150 (2012)

    Article  Google Scholar 

  3. Boetticher, G.D.: Improving the credibility of machine learner models in software engineering. In: Zhang, D. (ed.) Advances in Machine Learning Applications in Software Engineering, pp. 52–72. IGI Global, Clear Lake (2007)

    Chapter  Google Scholar 

  4. Brown, L., Cat, T., DasGupta, A.: Interval estimation for a proportion. Stat. Sci. 16, 101–133 (2001)

    MathSciNet  Google Scholar 

  5. Cataldo, M., Mockus, A., Roberts, J.A., Herbsleb, J.D.: Software dependencies, work dependencies, and their impact on failures. IEEE Trans. Software Eng. 35(6), 864–878 (2009)

    Article  Google Scholar 

  6. hua Chang, R., Mu, X., Zhang, L.: Software defect prediction using non-negative matrix factorization. JSW 6(11), 2114–2120 (2011)

    Google Scholar 

  7. Chidamber, S.R., Kemerer, C.F.: Towards a metrics suite for object-oriented design. In: Conference Proceedings on OOP Systems, Languages, and Applications, pp. 197–211 (1991)

    Article  Google Scholar 

  8. Czibula, G., Czibula, I.G., Miholca, D.L.: Enhancing relational association rules with gradualness. Int. J. Innovative Comput. Commun. Control 13, 289–305 (2016)

    Google Scholar 

  9. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. JASIS 41, 391–407 (1990)

    Article  Google Scholar 

  10. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  11. Gu, Q., Zhu, L., Cai, Z.: Evaluation measures of the classification performance of imbalanced data sets. In: Cai, Z., Li, Z., Kang, Z., Liu, Y. (eds.) Computational Intelligence and Intelligent Systems, pp. 461–471. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Haghighi, A.S., Dezfuli, M.A., Fakhrahmad, S.: Applying mining schemes to software fault prediction: a proposed approach aimed at test cost reduction. In: Proceedings of the World Congress on Engineering. WCE 2012, pp. 1–5, IEEE Computer Society, Washington (2012)

    Google Scholar 

  13. Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature review on fault prediction performance in software engineering. IEEE Trans. Software Eng. 38(6), 1276–1304 (2011)

    Article  Google Scholar 

  14. Kirbas, S., et al.: The relationship between evolutionary coupling and defects in large industrial software. J. Softw. Evol. Process 29(4), 1–19 (2017)

    Article  Google Scholar 

  15. Kirbas, S., Sen, A., Caglayan, B., Bener, A., Mahmutogullari, R.: The effect of evolutionary coupling on software defects: an industrial case study on a legacy system. In: Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM 2014, pp. 6:1–6:7. ACM, New York (2014)

    Google Scholar 

  16. Lavrač, N., Kavšek, B., Flach, P., Todorovski, L.: Subgroup discovery with CN2-SD. J. Mach. Learn. Res. 5, 153–188 (2004)

    MathSciNet  Google Scholar 

  17. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. CoRR abs/1405.4053 (2014)

    Google Scholar 

  18. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  19. McCabe, T.J.: A complexity measure. IEEE Trans. Software Eng. 2(4), 308–320 (1976)

    Article  MathSciNet  Google Scholar 

  20. Miholca, D.L., Czibula, G., Czibula, I.G.: A novel approach for software defect prediction through hybridizing gradual relational association rules with artificial neural networks. Inf. Sci. 441, 152–170 (2018)

    Article  MathSciNet  Google Scholar 

  21. Miholca, D.: An adaptive gradual relational association rules mining approach. Studia Universitatis Babeş-Bolyai Informatica 63(1), 94–110 (2018)

    Article  MathSciNet  Google Scholar 

  22. Panichella, A., Oliveto, R., Lucia, A.D.: Cross-project defect prediction models: L’union fait la force. In: IEEE Conference on Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), February 2014, pp. 164–173 (2014)

    Google Scholar 

  23. Poshyvanyk, D., Marcus, A., Ferenc, R., Gyimóthy, T.: Using information retrieval based coupling measures for impact analysis. Empirical Softw. Eng. 14(1), 5–32 (2009)

    Article  Google Scholar 

  24. Tera-promise repository. http://openscience.us/repo/

  25. Wang, S., Liu, T., Tan, L.: Automatically learning semantic features for defect prediction. In: Proceedings of the 38th International Conference on Software Engineering, pp. 297–308. ICSE 2016. ACM, New York (2016)

    Google Scholar 

  26. Zubrow, D., Clark, B.: How good is the software : a review of defect prediction techniques. In: Software Engineering Symposium, pp. 1–7. Carreige Mellon University (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana-Lucia Miholca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miholca, DL., Czibula, G. (2019). Software Defect Prediction Using a Hybrid Model Based on Semantic Features Learned from the Source Code. In: Douligeris, C., Karagiannis, D., Apostolou, D. (eds) Knowledge Science, Engineering and Management. KSEM 2019. Lecture Notes in Computer Science(), vol 11775. Springer, Cham. https://doi.org/10.1007/978-3-030-29551-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29551-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29550-9

  • Online ISBN: 978-3-030-29551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics