Skip to main content

Proportional Lumpability

  • Conference paper
  • First Online:
Formal Modeling and Analysis of Timed Systems (FORMATS 2019)

Abstract

We deal with the lumpability approach to cope with the state space explosion problem inherent to the computation of the performance indices of large stochastic models using a state aggregation technique. The lumpability method applies to Markov chains exhibiting some structural regularity and allows one to efficiently compute the exact values of the performance indices when the model is actually lumpable. The notion of quasi-lumpability is based on the idea that a Markov chain can be altered by relatively small perturbations of the transition rates in such a way that the new resulting Markov chain is lumpable. In this case only upper and lower bounds on the performance indices can be derived. In this paper we introduce a novel notion of quasi lumpability, named proportional lumpability, which extends the original definition of lumpability but, differently than the general definition of quasi lumpability, it allows one to derive exact performance indices for the original process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alzetta, G., Marin, A., Piazza, C., Rossi, S.: Lumping-based equivalences in markovian automata: algorithms and applications to product-form analyses. Inf. Comput. 260, 99–125 (2018). https://doi.org/10.1016/j.ic.2018.04.002

    Article  MathSciNet  MATH  Google Scholar 

  2. Baarir, S., Beccuti, M., Dutheillet, C., Franceschinis, G.: From partially to fully lumped Markov chains in stochastic well formed Petri nets. In: Proceedings of Valuetools 2009 Conference, p. 44. ACM (2009). https://doi.org/10.4108/ICST.VALUETOOLS2009.7733

  3. Baarir, S., Beccuti, M., Dutheillet, C., Franceschinis, G., Haddad, S.: Lumping partially symmetrical stochastic models. Perform. Eval. 68(1), 21–44 (2011). https://doi.org/10.1016/j.peva.2010.09.002

    Article  Google Scholar 

  4. Baarir, S., Dutheillet, C., Haddad, S., Iliè, J.M.: On the use of exact lumping in partially symmetrical Well-formed Petri Nets. In: Proceedings of International Conference on Quantitative Evaluation of Systems (QEST), Torino, Italy, pp. 23–32. IEEE Computer Society (2005). https://doi.org/10.1109/QEST.2005.26

  5. Baier, C., Katoen, J.P., Hermanns, H., Wolf, V.: Comparative branching-time semantics for Markov chains. Inf. Comput. 200(2), 149–214 (2005). https://doi.org/10.1016/j.ic.2005.03.001

    Article  MathSciNet  MATH  Google Scholar 

  6. Balsamo, S., Marin, A.: Queueing networks. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 34–82. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0_2

    Chapter  Google Scholar 

  7. Bernardo, M.: Weak Markovian bisimulation congruences and exact CTMC-level aggregations for concurrent processes. In: Proceedings of the 10th Workshop on Quantitative Aspects of Programming Languages and Systems (QALP 2012), pp. 122–136. EPTCS (2012). https://doi.org/10.4204/EPTCS.85.9

    Article  Google Scholar 

  8. Bernardo, M.: Weak Markovian bisimulation congruences and exact CTMC-level aggregations for sequential processes. In: Bruni, R., Sassone, V. (eds.) TGC 2011. LNCS, vol. 7173, pp. 89–103. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30065-3_6

    Chapter  Google Scholar 

  9. Bravetti, M.: Revisiting interactive Markov chains. Electr. Notes Theor. Comput. Sci. 68(5), 65–84 (2003). https://doi.org/10.1016/S1571-0661(04)80520-6

    Article  MATH  Google Scholar 

  10. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl. Probab. 31, 59–75 (1994). https://doi.org/10.1017/S0021900200107338

    Article  MathSciNet  MATH  Google Scholar 

  11. Daly, D., Buchholz, P., Sanders, W.: Bound-preserving composition for Markov reward models. In: Third International Conference on the Quantitative Evaluation of Systems (QEST 2006), pp. 243–252 (2006). https://doi.org/10.1109/QEST.2006.8

  12. Franceschinis, G., Muntz, R.R.: Bounds for quasi-lumpable Markov chains. Perform. Eval. 20(1–3), 223–243 (1994). https://doi.org/10.1016/0166-5316(94)90015-9

    Article  MATH  Google Scholar 

  13. Franceschinis, G., Muntz, R.R.: Computing bounds for the performance indices of quasi-lumpable stochastic well-formed nets. IEEE Trans. Softw. Eng. 20(7), 516–525 (1994). https://doi.org/10.1109/32.297940

    Article  MATH  Google Scholar 

  14. Hermanns, H.: Interactive Markov Chains. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45804-2

    Book  MATH  Google Scholar 

  15. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge Press, Cambridge (1996)

    Book  Google Scholar 

  16. Hillston, J., Marin, A., Piazza, C., Rossi, S.: Contextual lumpability. In: Proceedings of Valuetools 2013 Conference, pp. 194–203. ACM Press (2013). https://doi.org/10.4108/icst.valuetools.2013.254408

  17. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, New York (1976)

    MATH  Google Scholar 

  18. Marin, A., Rossi, S.: Autoreversibility: exploiting symmetries in Markov chains. In: Proceedings of IEEE MASCOTS, San Francisco, CA, USA, pp. 151–160 (2013). https://doi.org/10.1109/MASCOTS.2013.23

  19. Marin, A., Rossi, S.: On the relations between Markov chain lumpability andreversibility. Acta Informatica 54(5), 447–485 (2017). https://doi.org/10.1007/s00236-016-0266-1

    Article  MathSciNet  MATH  Google Scholar 

  20. Milios, D., Gilmore, S.: Component aggregation for PEPA models: an approach based on approximate strong equivalence. Perform. Eval. 94, 43–71 (2015). https://doi.org/10.1016/j.peva.2015.09.004

    Article  Google Scholar 

  21. Molloy, M.K.: Performance analysis using stochastic Petri nets. IEEE Trans. Comput. 31(9), 913–917 (1982). https://doi.org/10.1109/TC.1982.1676110

    Article  Google Scholar 

  22. Plateau, B.: On the stochastic structure of parallelism and synchronization models for distributed algorithms. SIGMETRICS Perform. Eval. Rev. 13(2), 147–154 (1985). https://doi.org/10.1145/317795.317819

    Article  Google Scholar 

  23. Smith, M.: Compositional abstractions for long-run properties of stochastic systems. In: Eighth International Conference on Quantitative Evaluation of Systems, QEST 2011, pp. 223–232 (2011). https://doi.org/10.1109/QEST.2011.37

  24. Sumita, U., Reiders, M.: Lumpability and time-reversibility in the aggregation-disaggregation method for large Markov chains. Commun. Stat. Stoch. Model. 5, 63–81 (1989). https://doi.org/10.1080/15326348908807099

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabina Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marin, A., Piazza, C., Rossi, S. (2019). Proportional Lumpability. In: André, É., Stoelinga, M. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2019. Lecture Notes in Computer Science(), vol 11750. Springer, Cham. https://doi.org/10.1007/978-3-030-29662-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29662-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29661-2

  • Online ISBN: 978-3-030-29662-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics