Skip to main content

DLENSO: A Deep Learning ENSO Forecasting Model

  • Conference paper
  • First Online:
PRICAI 2019: Trends in Artificial Intelligence (PRICAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11671))

Included in the following conference series:

Abstract

El Niño-Southern Oscillation (ENSO) phenomenon is the strongest signal in the interannual time scale of global climate, and has a significant impact on the global short-term climate (temperature, precipitation, etc.). Every year, researchers around the world would predict ENSO for the coming year, and have been studied new forecasting methods all the time, including numerical methods, statistical methods and deep learning methods. The existing deep learning methods are only for the ENSO index or single-point meteorological elements forecasting and rarely involve forecasting of specific regions. In this paper, we formulate a deep learning ENSO forecasting model (DLENSO) to predict ENSO through predicting Sea Surface Temperature (SST) in the tropical Pacific region directly. DLENSO is a sequence to sequence model whose encoder and decoder are both multilayered Convolutional Long Short-Term Memory (ConvLSTM), the input and prediction target of DLENSO are both spatiotemporal sequences. We explore the optimal setting of this model by experiments and report the accuracy on Niño3.4 region to confirm the effectiveness of the proposed method. Moreover, it can be concluded that DLENSO is superior to the LSTM model and deterministic forecast model, and almost equivalent to the ensemble-mean forecast model in the medium and long-term (4–12 months ahead) forecast. This model will pave a new way of predicting ENSO using deep learning technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bjerknes, J.: Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 97(3), 163–172 (1968)

    Article  Google Scholar 

  2. Iizumi, T., Luo, J.J., Challinor, A.J., et al.: Impacts of El Niño Southern Oscillation on the global yields of major crops. Nat. Commun. 5, 3712 (2014)

    Article  Google Scholar 

  3. Shuai, J., Zhao, Z., Sun, D.Z., et al.: ENSO, climate variability and crop yields in China. Clim. Res. 58(2), 133–148 (2013)

    Article  Google Scholar 

  4. Zhai, P., Yu, R., Guo, Y., et al.: The strong El Niño of 2015/16 and its dominant impacts on global and China’s climate. Meteorol. Res. 30, 283 (2016)

    Article  Google Scholar 

  5. Goddard, L., Mason, S.J., Zebiak, S.E., Ropelewski, C.F., Basher, R., Cane, M.A.: Current approaches to seasonal to interannual climate predictions. Int. J. Climatol. 12(9), 1111–1152 (2001)

    Article  Google Scholar 

  6. Yuzhu, W., Jinrong, J., et al.: A scalable parallel algorithm for atmospheric general circulation models on a multi-core cluster. Future Gener. Comput. Syst. 72, 1–10 (2017)

    Article  Google Scholar 

  7. Jin, E.K., Kinter, J.L., Wang, B., et al.: Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim. Dyn. 31(6), 647–664 (2008)

    Article  Google Scholar 

  8. Jiang, J., Wang, T., Chi, X., et al.: SC-ESAP: a parallel application platform for earth system model. Procedia Comput. Sci. 80, 1612–1623 (2016)

    Article  Google Scholar 

  9. Aguilarmartinez, S., Hsieh, W.W.: Forecasts of tropical Pacific sea surface temperatures by neural networks and support vector regression. Int. J. Oceanogr. 2009, 1687–9406 (2009)

    Google Scholar 

  10. Zhang, Q., Wang, H., Dong, J., et al.: Prediction of sea surface temperature using long short-term memory. IEEE Geosci. Remote Sens. Lett. 14, 1745–1749 (2017)

    Article  Google Scholar 

  11. Feng, Q.Y., Vasile, R., Segond, M., et al.: ClimateLearn: a machine-learning approach for climate prediction using network measures. Geosci. Model Dev. Discuss. 1–18 (2016)

    Google Scholar 

  12. Nooteboom, P.D.: Using network theory and machine learning to predict El Niño. Earth Syst. Dyn. 9, 969–983 (2017)

    Article  Google Scholar 

  13. Zheng, F., Zhu, J., et al.: Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate coupled model. Clim. Dyn. 47(12), 3901–3915 (2016)

    Article  Google Scholar 

  14. Shi, X., Chen, Z., Wang, H., et al.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting, vol. 9199, pp. 802–810 (2015)

    Google Scholar 

  15. Hochreiter, S., Schmidhuber, J.: Long Short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  16. Graves, A.: Supervised sequence labelling. In: Kawakami, K. (ed.) Supervised Sequence Labelling with Recurrent Neural Networks. Studies in Computational Intelligence, vol. 385, pp. 1735–1780. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24797-2_2

    Chapter  MATH  Google Scholar 

  17. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks (2014)

    Google Scholar 

  18. Plank, B., Søgaard, A., Goldberg, Y.: Multilingual part-of-speech tagging with bidirectional long short-term memory models and auxiliary loss (2014)

    Google Scholar 

  19. NOAA ESRL: NOAA OI SST V2 high resolution dataset. https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html

  20. Saha, S., et al.: NCEP climate forecast system reanalysis (CFSR) 6-hourly products, January 1979 to December 2010. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, CO (2010)

    Google Scholar 

  21. Bengio, S., Vinyals, O., Jaitly, N., et al.: Scheduled sampling for sequence prediction with recurrent neural networks. In: Proceedings of the International Conference on Neural Information Processing Systems (2015)

    Google Scholar 

  22. Luo, J.J., Masson, S., Behera, S.K., et al.: Extended ENSO predictions using a fully coupled ocean-atmosphere model. J. Clim. 21(1), 84–93 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The research is funded by the National Key Research and Development Program of China (No. 2016YFB0200800), the Knowledge Innovation Program of the Chinese Academy of Sciences (No. XXH13506-402, No. XXH13506-302), Strategic Priority Research Programme (XDC01040000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengfei Lin or Jinrong Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, D., Lin, P., Liu, H., Ding, L., Jiang, J. (2019). DLENSO: A Deep Learning ENSO Forecasting Model. In: Nayak, A., Sharma, A. (eds) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. Lecture Notes in Computer Science(), vol 11671. Springer, Cham. https://doi.org/10.1007/978-3-030-29911-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29911-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29910-1

  • Online ISBN: 978-3-030-29911-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics