Skip to main content

A Hybrid Regression Model for Mixed Numerical and Categorical Data

  • Conference paper
  • First Online:
Advances in Computational Intelligence Systems (UKCI 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1043))

Included in the following conference series:

Abstract

It is noticeable in different heterogeneity types that complexity is inherent in heterogeneous data, and regression analysis methods are well defined and exhibit high-accuracy performance with numeric data. However, real-world problems contain non-numerical variables. There are two main approaches to handling mixed-type data sets in regression analyses. The first approach is unifying data types for all the variables (such as continuous numerical data) and then applying the regression analysis. However, this approach degrades the data quality, as some original data types are converted to other types in the learning stage. The second approach is to apply some similarity measurements, which can be highly complex in some situations. To overcome these limitations, we propose a tree-based regression model to effectively handle the mixed-type data sets without using a dummy code or a similarity measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim, K., Hong, J.S.: A hybrid decision tree algorithm for mixed numeric and categorical data in regression analysis. Pattern Recogn. Lett. 98, 39–45 (2017). https://doi.org/10.1016/j.patrec.2017.08.011

    Article  Google Scholar 

  2. Cuadras, C.M., Arenas, C.: A distance-based regression model for prediction with mixed data. Commun. Stat. - Theor. Meth. 19, 2261–2279 (1990). https://doi.org/10.1080/03610929008830319

    Article  MathSciNet  Google Scholar 

  3. Hardy, M.A.: Regression with Dummy Variables, vol. 93. Sage Publications, Newbury Park (1993)

    Book  Google Scholar 

  4. Cuadras, C.M., Areans, C., Fortiana, J.: Some computational aspects of a distance-based model for prediction. Commun. Stat. - Simul. Comput. 25, 593–609 (1996). https://doi.org/10.1080/03610919608813332

    Article  MATH  Google Scholar 

  5. Marcoulides, G.A.: Discovering knowledge in data: an introduction to data mining. J. Am. Stat. Assoc. 100, 1465–1465 (2005)

    Article  Google Scholar 

  6. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. Royal Stat. Soc.: Ser. B (Statistical Methodology) 68, 49–67 (2006). https://doi.org/10.1111/j.1467-9868.2005.00532.x

    Article  MathSciNet  MATH  Google Scholar 

  7. Boj Del Val, E., Claramunt Bielsa, M.M., Fortiana, J.: Selection of predictors in distance-based regression. Commun. Stat. - Simul. Comput. 36, 87–98 (2007). https://doi.org/10.1080/03610910601096312

    Article  MathSciNet  MATH  Google Scholar 

  8. Meier, L., Van De Geer, S., Bühlmann, P.: The group lasso for logistic regression. J. Royal Stat. Soc.: Ser. B (Statistical Methodology) 70, 53–71 (2008). https://doi.org/10.1111/j.1467-9868.2007.00627.x

    Article  MathSciNet  MATH  Google Scholar 

  9. Han, J., Kamber, M., Pei, J.: Data Mining: Moncepts and Techniques. Morgan Kaufmann, San Francisco (2012)

    MATH  Google Scholar 

  10. Cohen, J., Cohen, P., West, S.G., Aiken, L.S.: Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. Routledge, New York (2003)

    Google Scholar 

  11. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2011). https://doi.org/10.1016/C2009-0-19715-5

    Book  Google Scholar 

  12. UCI Machine Learning repository. https://archive.ics.uci.edu/ml/index.php

  13. Kaggle. https://www.kaggle.com

  14. Quinlan, J.R.: Learning with continuous classes. In: 5th Australian Joint Conference on Artificial Intelligence, vol. 92, pp. 343-348. Singapore (1992)

    Google Scholar 

  15. Grubinger, T., Zeileis, A., Pfeiffer, K.-P.: Evtree : evolutionary learning of globally optimal classification and regression trees in R. J. Stat. Softw. 61, 1–29 (2014). https://doi.org/10.18637/jss.v061.i01

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nouf Alghanmi or Xiao-Jun Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alghanmi, N., Zeng, XJ. (2020). A Hybrid Regression Model for Mixed Numerical and Categorical Data. In: Ju, Z., Yang, L., Yang, C., Gegov, A., Zhou, D. (eds) Advances in Computational Intelligence Systems. UKCI 2019. Advances in Intelligent Systems and Computing, vol 1043. Springer, Cham. https://doi.org/10.1007/978-3-030-29933-0_31

Download citation

Publish with us

Policies and ethics