Skip to main content

CNASV: A Convolutional Neural Architecture Search-Train Prototype for Computer Vision Task

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2019)

Abstract

Neural Architecture Search (NAS) has become more and more prevalent in the field of deep learning in the past two years. Existing works often focus on image classification, and few works recently extend NAS to another computer vision task, such as semantic image segmentation. The semantic image segmentation is essentially a dense prediction for each pixel on whole image. Therefore, we choose the same basic primitive operations to build the search space for the two computer vision task respectively. Searching good neural network architectures and then training them from scratch is a regular procedure for NAS. In this paper, we design a prototype system that deploy search module and train module to collaborate with each other. Follow the former research, we initialize over-parameterized cells architecture and then transform to the continuous relaxation of the architecture to derive the good subnetwork by gradient descent. Our system can support any differential search algorithm, such as one-shot, DARTS or ProxylessNAS. We illustrate the effectiveness of our chosen primitive operations in the image classification and ability to transfer these operations to build search space for semantic image segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apache Hadoop. https://hadoop.apache.org/

  2. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using reinforcement learning. In: International Conference on Learning Representations (ICLR), pp. 1–18 (2017). https://doi.org/10.1080/0305215042000274942. http://arxiv.org/abs/1611.02167

    Article  MathSciNet  Google Scholar 

  3. Baker, B., Gupta, O., Raskar, R., Naik, N.: Accelerating neural architecture search using performance prediction. In: ICLR Workshop, vol. 2, pp. 1–7 (2018). http://metalearning.ml/papers/metalearn17_baker.pdf

  4. Bender, G., Kindermans, P.J., Zoph, B., Vasudevan, V., Le, Q.: Understanding and simplifying one-shot architecture search. In: 35th International Conference on Machine Learning (ICML), vol. 80, pp. 549–558 (2018). https://doi.org/10.1109/TDEI.2009.5211872. http://proceedings.mlr.press/v80/bender18a.html

    Article  Google Scholar 

  5. Cai, H., Chen, T., Zhang, W., Yu, Y., Wang, J.: Efficient architecture search by network transformation. In: AAAI (2018). http://arxiv.org/abs/1707.04873

  6. Cai, H., Zhu, L., Han, S.: ProxylessNAS: direct neural architecture search on target task and hardware. In: 2019 International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  7. Chen, L.C., et al.: Searching for efficient multi-scale architectures for dense image prediction. In: NeurIPS (2018)

    Google Scholar 

  8. Deng, B., Lin, D., Yan, J., Lin, D.: Peephole: predicting network performance before training (2017). http://arxiv.org/abs/1712.03351

  9. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. CoRR abs/1808.05377 (2018)

    Google Scholar 

  10. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015). https://doi.org/10.1007/s11263-014-0733-5

    Article  Google Scholar 

  11. Grathwohl, W., Creager, E., Kamyar, S., Ghasemipour, S., Zemel, R.: Gradient-based optimization of neural network architecture. In: International Conference on Learning Representations (ICLR), pp. 1–6 (2018)

    Google Scholar 

  12. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  13. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)

    Google Scholar 

  14. Jin, H., Song, Q., Hu, X.: Efficient neural architecture search with network morphism. CoRR abs/1806.10282 (2018)

    Google Scholar 

  15. Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., Xing, E.: Neural architecture search with bayesian optimisation and optimal transport (2018). http://arxiv.org/abs/1802.07191

  16. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

  17. Klein, A., Falkner, S., Springenberg, J.T., Hutter, F.: Learning curve prediction with bayesian neural networks. In: International Conference on Learning Representations (ICLR), pp. 1–16. MCMC (2017)

    Google Scholar 

  18. Liu, C., et al.: Auto-DeepLab: hierarchical neural architecture search for semantic image segmentation. CoRR abs/1901.02985 (2019)

    Google Scholar 

  19. Liu, C., et al.: Progressive neural architecture search. In: ECCV (2018)

    Google Scholar 

  20. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical representations for efficient architecture search. In: 2018 International Conference on Learning Representations (ICLR) (2018). https://openreview.net/forum?id=BJQRKzbA-

  21. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: 2019 International Conference on Learning Representations (ICLR) (2019). https://openreview.net/forum?id=S1eYHoC5FX

  22. Miikkulainen, R., et al.: Evolving deep neural networks. In: Kozma, R., Alippi, C., Choe, Y., Morabito, F.C. (eds.) Artificial Intelligence in the Age of Neural Networks and Brain Computing. Elsevier, Amsterdam (2018). http://nn.cs.utexas.edu/?miikkulainen:chapter18

    Chapter  Google Scholar 

  23. Milicchio, F., Gehrke, W.A.: Distributed Services with OpenAFS: For Enterprise and Education, 1st edn. Springer, Heidelberg (2010). Incorporated

    Google Scholar 

  24. Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS, pp. 1–4 (2017)

    Google Scholar 

  25. Qing, Y.: FastDFS is an open source high performance distributed file system (DFS) (2013). https://github.com/happyfish100/fastdfs/tree/master

  26. Sergeev, A., Balso, M.D.: Horovod: fast and easy distributed deep learning in TensorFlow. CoRR abs/1802.05799 (2018). http://arxiv.org/abs/1802.05799

  27. Shin, R., Packer, C., Song, D.: Differentiable neural network architecture search. In: International Conference on Learning Representations (ICLR), pp. 1–4 (2018). No. 2017

    Google Scholar 

  28. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009). https://doi.org/10.1162/artl.2009.15.2.15202. http://www.mitpressjournals.org/doi/10.1162/artl.2009.15.2.15202

    Article  Google Scholar 

  29. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002). https://doi.org/10.1162/106365602320169811

    Article  Google Scholar 

  30. Elsken, T., Metzen, J.H., Hutter, F.: Simple and efficient architecture search for convolutional neural networks. In: 2018 International Conference on Learning Representations (ICLR) (2018). https://openreview.net/forum?id=SySaJ0xCZ

  31. Xie, L., Yuille, A.L.: Genetic CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1388–1397 (2017)

    Google Scholar 

  32. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: International Conference on Learning Representations (ICLR), pp. 1–16 (2017). https://doi.org/10.1016/j.knosys.2015.01.010

    Article  Google Scholar 

  33. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianbao Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, T., Weng, Y., Yang, G. (2019). CNASV: A Convolutional Neural Architecture Search-Train Prototype for Computer Vision Task. In: Wang, X., Gao, H., Iqbal, M., Min, G. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 292. Springer, Cham. https://doi.org/10.1007/978-3-030-30146-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30146-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30145-3

  • Online ISBN: 978-3-030-30146-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics