Skip to main content

Self-adaptive Team of Aquatic Drones with a Communication Network for Aquaculture

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2019)

Abstract

The use of Unmanned Surface Vehicle (USV) teams, more commonly known as drones, has become increasingly common for aquaculture scenarios due to their availability and low cost. For monitoring to be feasible and in real time, it is necessary for the drones to be in constant communication so that they can organize themselves and send data to a land platform. This paper presents a cooperative navigation behavior in constant communication with the network layer to achieve a better overall performance in the coverage of a space and a better network quality between heterogeneous USVs. In conclusion, increasing the amount of USVs is beneficial as long as an Avoid or Assist does not impact the overall time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andres, E., Nehlig, P., Françon, J.: Supercover of straight lines, planes and triangles. In: Ahronovitz, E., Fiorio, C. (eds.) DGCI 1997. LNCS, vol. 1347, pp. 243–254. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024845

    Chapter  Google Scholar 

  2. AquaBotix: SwarmDiver Brochure. www.aquabotix.com/images/SwarmDiver%20Brochure%208.23.18.pdf. Accessed 19 Nov 2018

  3. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998). https://doi.org/10.1109/70.736776

    Article  Google Scholar 

  4. Berger, C., Wzorek, M., Kvarnström, J., Conte, G., Doherty, P., Eriksson, A.: Area coverage with heterogeneous UAVs using scan patterns. In: 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 342–349, October 2016. https://doi.org/10.1109/SSRR.2016.7784325

  5. Cong, B.L., Liu, X.D., Chen, Z.: Distributed attitude synchronization of formation flying via consensus-based virtual structure. Acta Astronaut. 68(11), 1973–1986 (2011). https://doi.org/10.1016/j.actaastro.2010.11.014. http://www.sciencedirect.com/science/article/pii/S0094576510004303

    Article  Google Scholar 

  6. Cui, R., Ge, S.S., How, B.V.E., Choo, Y.S.: Leader-follower formation control of underactuated autonomous underwater vehicles. Ocean Eng. 37(17), 1491–1502 (2010). https://doi.org/10.1016/j.oceaneng.2010.07.006. http://www.sciencedirect.com/science/article/pii/S0029801810001678

    Article  Google Scholar 

  7. Ducatelle, F., et al.: Cooperative navigation in robotic swarms. Swarm Intell. 8, 1–33 (2014). https://doi.org/10.1007/s11721-013-0089-4

    Article  Google Scholar 

  8. Duchoň, F., et al.: Path planning with modified a star algorithm for a mobile robot. Procedia Eng. 96, 59–69 (2014)

    Article  Google Scholar 

  9. Ferreira, B., et al.: Flexible unmanned surface vehicles enabling future internet experimentally-driven research. In: OCEANS 2017 - Aberdeen, pp. 1–6, June 2017. https://doi.org/10.1109/OCEANSE.2017.8084934

  10. Kowalczyk, W., Kozlowski, K.: Leader-follower control and collision avoidance for the formation of differentially-driven mobile robots. In: 2018 23rd International Conference on Methods Models in Automation Robotics (MMAR), pp. 132–137, August 2018

    Google Scholar 

  11. Liu, Y., Bucknall, R.: Path planning algorithm for unmanned surface vehicle formations in a practical maritime environment. Ocean Eng. 97, 126–144 (2015). https://doi.org/10.1016/j.oceaneng.2015.01.008. http://www.sciencedirect.com/science/article/pii/S0029801815000165

    Article  Google Scholar 

  12. Lloret, J., Sendra, S., Garcia, M., Lloret, G.: Group-based underwater wireless sensor network for marine fish farms. In: 2011 IEEE GLOBECOM Workshops (GC Wkshps), pp. 115–119, December 2011. https://doi.org/10.1109/GLOCOMW.2011.6162361

  13. López, M., Gómez, J.M., Sabater, J., Herms, A.: IEEE 802.15.4 based wireless monitoring of pH and temperature in a fish farm. In: Melecon 2010–2010 15th IEEE Mediterranean Electrotechnical Conference, pp. 575–580, April 2010. https://doi.org/10.1109/MELCON.2010.5476024

  14. MARE: SmartBioR project. http://www.mare-centre.pt/en/node/703. Accessed 19 Nov 2018

  15. Mehrjerdi, H., Ghommam, J., Saad, M.: Nonlinear coordination control for a group of mobile robots using a virtual structure. Mechatronics 21(7), 1147–1155 (2011). https://doi.org/10.1016/j.mechatronics.2011.06.006. http://www.sciencedirect.com/science/article/pii/S0957415811001127

    Article  Google Scholar 

  16. Morbidi, F., Bullo, F., Prattichizzo, D.: Visibility maintenance via controlled invariance for leader–follower vehicle formations. Automatica 47(5), 1060–1067 (2011). https://doi.org/10.1016/j.automatica.2011.01.065. http://www.sciencedirect.com/science/article/pii/S000510981100080X

    Article  MathSciNet  Google Scholar 

  17. Paravisi, M., Santos, D.H., Jorge, V., Heck, G., Gonçalves, L.M., Amory, A.: Unmanned surface vehicle simulator with realistic environmental disturbances. Sensors 19(5) (2019). https://doi.org/10.3390/s19051068. https://www.mdpi.com/1424-8220/19/5/1068

    Article  Google Scholar 

  18. Peng, Z., Wen, G., Rahmani, A., Yu, Y.: Leader–follower formation control of nonholonomic mobile robots based on a bioinspired neurodynamic based approach. Robot. Auton. Syst. 61(9), 988–996 (2013). https://doi.org/10.1016/j.robot.2013.05.004. http://www.sciencedirect.com/science/article/pii/S092188901300095X

    Article  Google Scholar 

  19. Ramos, D., Oliveira, L., Almeida, L., Moreno, U.: Network interference on cooperative mobile robots consensus. Robot 2015: Second Iberian Robotics Conference. AISC, vol. 417, pp. 651–663. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27146-0_50

    Chapter  Google Scholar 

  20. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, Malaysia, Kuala Lumpur (2016)

    MATH  Google Scholar 

  21. Shiell, N.: Behaviour-based pattern formation in a swarm of anonymous robots. Ph.D. thesis, Memorial University of Newfoundland (2017)

    Google Scholar 

  22. Sousa, D., Luís, M., Sargento, S., Pereira, A.: An aquatic mobile sensing USV swarm with a link quality-based delay tolerant network. Sensors 18(10) (2018). https://doi.org/10.3390/s18103440. http://www.mdpi.com/1424-8220/18/10/3440

    Article  Google Scholar 

  23. Zhou, D., Wang, Z., Schwager, M.: Agile coordination and assistive collision avoidance for quadrotor swarms using virtual structures. IEEE Trans. Robot. 34(4), 916–923 (2018). https://doi.org/10.1109/TRO.2018.2857477

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the European Regional Development Fund (FEDER), through the Competitiveness and Internationalization Operational Programme (COMPETE 2020) of the Portugal 2020 by the Project MOBIWISE, POCI-01-0145-FEDER-016426, through the Programa Integrado de IC&DT Centro2020 by the project “SmartBioR: Valorizacao Inteligente de Recursos Biologicos Marinhos Endogenos num Clima em Mudanca”, Centro-01-0145-FEDER-000018, and through Urban Innovative Actions Initiative by the project AVEIRO STEAM City, UIA03-084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Sousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sousa, D., Sargento, S., Pereira, A., Luís, M. (2019). Self-adaptive Team of Aquatic Drones with a Communication Network for Aquaculture. In: Moura Oliveira, P., Novais, P., Reis, L. (eds) Progress in Artificial Intelligence. EPIA 2019. Lecture Notes in Computer Science(), vol 11805. Springer, Cham. https://doi.org/10.1007/978-3-030-30244-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30244-3_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30243-6

  • Online ISBN: 978-3-030-30244-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics