Skip to main content

UTOPIC: Under-Approximation Through Optimal Control

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11785))

Included in the following conference series:

Abstract

We consider a class of nonlinear systems of differential equations with uncertainties, i.e., with lack of knowledge in some of the parameters that is represented by a time-varying unknown bounded functions. An under-approximation of such systems consists of a subset of its reachable set, for any value of the unknown parameters. By relying on optimal control theory through Pontryagin’s principle, we provide an algorithm for the under-approximation of a linear combination of the state variables in terms of a fully automated tool-chain named UTOPIC. This allows to establish tight under-approximations of common benchmarks models with dimensions as large as sixty-five.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Althoff, M.: Cora 2016 manual

    Google Scholar 

  2. Althoff, M.: Reachability analysis of nonlinear systems using conservative polynomialization and non-convex sets. In: HSCC, pp. 173–182 (2013)

    Google Scholar 

  3. Althoff, M.: An introduction to CORA 2015. In: Proceedings of the Workshop on Applied Verification for Continuous and Hybrid Systems (2015)

    Google Scholar 

  4. Althoff, M., Le Guernic, C., Krogh, B.H.: Reachable set computation for uncertain time-varying linear systems. In: HSCC pp. 93–102 (2011)

    Google Scholar 

  5. Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization. In: CDC, pp. 4042–4048 (2008)

    Google Scholar 

  6. Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using conservative approximation. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 20–35. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36580-X_5

    Chapter  MATH  Google Scholar 

  7. Asarin, E., Dang, T.: Abstraction by projection and application to multi-affine systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 32–47. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2_3

    Chapter  MATH  Google Scholar 

  8. Benvenuti, L., et al.: Reachability computation for hybrid systems with ariadne. In: Proceedings of the 17th IFAC World Congress, vol. 41, pp. 8960–8965 (2008)

    Article  Google Scholar 

  9. Bisgaard, M., Gerhardt, D., Hermanns, H., Krcál, J., Nies, G., Stenger, M.: Battery-aware scheduling in low orbit: the GomX-3 case. In: FM, pp. 559–576 (2016)

    Google Scholar 

  10. Bortolussi, L., Gast, N.: Mean field approximation of uncertain stochastic models. In: DSN (2016)

    Google Scholar 

  11. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation of differential equivalences. In: POPL (2016)

    Article  Google Scholar 

  12. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: a tool for the evaluation and reduction of ordinary differential equations. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 310–328. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_19

    Chapter  Google Scholar 

  13. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Maximal aggregation of polynomial dynamical systems. PNAS 114(38), 10029–10034 (2017)

    Article  Google Scholar 

  14. Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Automatic verification of competitive stochastic systems. In: TACAS, pp. 315–330 (2012)

    Google Scholar 

  15. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_18

    Chapter  Google Scholar 

  16. Chen, X., Sankaranarayanan, S., Ábrahám, E.: Under-approximate flowpipes for non-linear continuous systems. In: FMCAD, pp. 59–66 (2014)

    Google Scholar 

  17. Craciun, G., Tang, Y., Feinberg, M.: Understanding bistability in complex enzyme-driven reaction networks. PNAS 103(23), 8697–8702 (2006)

    Article  Google Scholar 

  18. Dang, T., Guernic, C.L., Maler, O.: Computing reachable states for nonlinear biological models. TCS 412(21), 2095–2107 (2011)

    Article  MathSciNet  Google Scholar 

  19. Dennis Jr., J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM (1996)

    Google Scholar 

  20. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_17

    Chapter  Google Scholar 

  21. Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models from executions. In: EMSOFT, pp. 26:1–26:10 (2013)

    Google Scholar 

  22. Duggirala, P.S., Viswanathan, M.: Parsimonious, simulation based verification of linear systems. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 477–494. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_26

    Chapter  MATH  Google Scholar 

  23. Fan, C., Mitra, S.: Bounded verification with on-the-fly discrepancy computation. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 446–463. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-7_32

    Chapter  MATH  Google Scholar 

  24. Fan, C., Qi, B., Mitra, S., Viswanathan, M., Duggirala, P.S.: Automatic reachability analysis for nonlinear hybrid models with C2E2. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 531–538. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_29

    Chapter  Google Scholar 

  25. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. J. Satisf. Boolean Model. Computation 1, 209–236 (2007)

    MATH  Google Scholar 

  26. Girard, A., Pappas, G.J.: Approximate bisimulations for nonlinear dynamical systems. In: CDC, pp. 684–689 (2005)

    Google Scholar 

  27. Girard, A., Le Guernic, C.: Efficient reachability analysis for linear systems using support functions. In: Proceedings of the 17th IFAC World Congress, vol. 41, pp. 8966–8971 (2008)

    Article  Google Scholar 

  28. Girard, A., Le Guernic, C., Maler, O.: Efficient computation of reachable sets of linear time-invariant systems with inputs. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 257–271. Springer, Heidelberg (2006). https://doi.org/10.1007/11730637_21

    Chapter  MATH  Google Scholar 

  29. Goubault, E., Putot, S.: Forward inner-approximated reachability of non-linear continuous systems. In: HSCC, pp. 1–10 (2017)

    Google Scholar 

  30. Goubault, E., Putot, S.: Inner and outer reachability for the verification of control systems. In: HSCC, pp. 11–22 (2019)

    Google Scholar 

  31. Kirk, D.E.: Optimal Control Theory: An Introduction. Dover Publications, Mineola (1970)

    Google Scholar 

  32. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: \(\updelta \)-reachability analysis for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_15

    Chapter  Google Scholar 

  33. Kurzhanski, A.B., Varaiya, P.: Dynamic optimization for reachability problems. J. Optim. Theory Appl. 108(2), 227–251 (2001)

    Article  MathSciNet  Google Scholar 

  34. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis: internal approximation. Syst. Control Lett. 41(3), 201–211 (2000)

    Article  MathSciNet  Google Scholar 

  35. Lafferriere, G., Pappas, G.J., Yovine, S.: A new class of decidable hybrid systems. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 137–151. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48983-5_15

    Chapter  MATH  Google Scholar 

  36. Larsen, K.G.: Validation, synthesis and optimization for cyber-physical systems. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 3–20. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_1

    Chapter  Google Scholar 

  37. Lee, J.D., Simchowitz, M., Jordan, M.I., Recht, B.: Gradient descent only converges to minimizers. In: COLT, pp. 1246–1257 (2016)

    Google Scholar 

  38. Li, M., Mosaad, P.N., Fränzle, M., She, Z., Xue, B.: Safe over- and under-approximation of reachable sets for autonomous dynamical systems. In: Jansen, D.N., Prabhakar, P. (eds.) FORMATS 2018. LNCS, vol. 11022, pp. 252–270. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00151-3_15

    Chapter  MATH  Google Scholar 

  39. Liberzon, D.: Calculus of Variations and Optimal Control Theory: A Concise Introduction. Princeton University Press, Princeton (2011)

    Book  Google Scholar 

  40. Ramon, E., Moore, R., Kearfott, B., Cloud, M.J.: Introduction to Interval Analysis. SIAM (2009)

    Google Scholar 

  41. Nedialkov, N.S.: Implementing a rigorous ODE solver through literate programming. In: Rauh, A., Auer, E. (eds.) Modeling, Design, and Simulation of Systems with Uncertainties. Mathematical Engineering, vol. 3, pp. 3–19. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-15956-5_1

    Chapter  Google Scholar 

  42. Nghiem, T., Sankaranarayanan, S., Fainekos, G.E., Ivancic, F., Gupta, A., Pappas, G. J.: Monte-carlo techniques for falsification of temporal properties of non-linear hybrid systems. In: HSCC, pp. 211–220 (2010)

    Google Scholar 

  43. Nikolskii, M.S.: Convergence of the gradient projection method in optimal controlproblems. Comput. Math. Model. 18, 148–156 (2007)

    Article  MathSciNet  Google Scholar 

  44. Prajna, S.: Barrier certificates for nonlinear model validation. Automatica 42(1), 117–126 (2006)

    Article  MathSciNet  Google Scholar 

  45. Ramdani, N., Meslem, N., Candau, Y.: Computing reachable sets for uncertain nonlinear monotone systems. Nonlinear Anal.: Hybrid Syst. 4(2), 263–278 (2010). IFAC World Congress 2008

    MathSciNet  MATH  Google Scholar 

  46. Scott, J.K., Barton, P.I.: Bounds on the reachable sets of nonlinear control systems. Automatica 49(1), 93–100 (2013)

    Article  MathSciNet  Google Scholar 

  47. Shoukry, Y., et al.: Scalable lazy SMT-based motion planning. In: CDC, pp. 6683–6688 (2016)

    Google Scholar 

  48. Tkachev, I., Abate, A.: A control Lyapunov function approach for the computation of the infinite-horizon stochastic reach-avoid problem. In: CDC, pp. 3211–3216 (2013)

    Google Scholar 

  49. Tschaikowski, M., Tribastone, M.: Approximate reduction of heterogenous nonlinear models with differential hulls. IEEE Trans. Autom. Control 61(4), 1099–1104 (2016)

    Article  MathSciNet  Google Scholar 

  50. Vilar, J.M.G., Kueh, H.Y., Barkai, N., Leibler, S.: Mechanisms of noise-resistance in genetic oscillators. PNAS 99(9), 5988–5992 (2002)

    Article  Google Scholar 

  51. Xue, B., Fränzle, M., Zhan, N.: Under-approximating reach sets for polynomial continuous systems. In: HSCC, pp. 51–60 (2018)

    Google Scholar 

  52. ue, B., Fränzle, M., Zhan, N.: Inner-approximating reachable sets for polynomial systems with time-varying uncertainties. CoRR (2018)

    Google Scholar 

  53. Xue, B., She, Z., Easwaran, A.: Under-approximating backward reachable sets by polytopes. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 457–476. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_25

    Chapter  Google Scholar 

  54. Xue, B., Wang, Q., Feng, S., Zhan, N.: Over- and under-approximating reachable sets for perturbed delay differential equations. CoRR (2019)

    Google Scholar 

  55. Zamani, M., Majumdar, R.: A Lyapunov approach in incremental stability. In: CDC (2011)

    Google Scholar 

Download references

Acknowledgement

Josu Doncel is supported by the Marie Sklodowska-Curie grant No. 777778, the Basque Government, Spain, Consolidated Research Group Grant IT1294-19, & the Spanish Ministry of Economy and Competitiveness project MTM2016-76329-R. Max Tschaikowski is supported by a Lise Meitner Fellowship funded by the Austrian Science Fund (FWF) under grant No. M-2393-N32 (COCO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Tschaikowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Doncel, J., Gast, N., Tribastone, M., Tschaikowski, M., Vandin, A. (2019). UTOPIC: Under-Approximation Through Optimal Control. In: Parker, D., Wolf, V. (eds) Quantitative Evaluation of Systems. QEST 2019. Lecture Notes in Computer Science(), vol 11785. Springer, Cham. https://doi.org/10.1007/978-3-030-30281-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30281-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30280-1

  • Online ISBN: 978-3-030-30281-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics