Skip to main content

Direction Selectivity Model Based on Lagged and Nonlagged Neurons

  • Conference paper
  • First Online:
Advances in Neural Computation, Machine Learning, and Cognitive Research III (NEUROINFORMATICS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 856))

Included in the following conference series:

  • 924 Accesses

Abstract

Direction selectivity (DS) of visual cortex neurons is modelled with a filter-based description of retino-thalamic pathway and a conductance-based population model of the cortex as a 2-d continuum. The DS mechanism is based on a pinwheel-dependent asymmetry of projections from lagged and non-lagged thalamic neurons to the cortex. The model realistically reproduces responses to drifting gratings. The model reveals the role of the cortex in sharpening DS, keeping interneurons non-selective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148, 574–591 (1959)

    Article  Google Scholar 

  2. Adelson, E.H., Bergen, J.R.: Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A. 2, 284–299 (1985)

    Article  Google Scholar 

  3. Cai, D., DeAngelis, G.C., Freeman, R.D.: Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. J. Neurophysiol. 78(2), 1045–1061 (1997)

    Article  Google Scholar 

  4. Vigeland, L.E., Contreras, D., Palmer, L.A.: Synaptic mechanisms of temporal diversity in the lateral geniculate nucleus of the thalamus. J. Neurosci. 33(5), 1887–1896 (2013)

    Article  Google Scholar 

  5. Saul, A.B., Humphrey, A.L.: Evidence of input from lagged cells in the lateral geniculate nucleus to simple cells in cortical area 17 of the cat. J. Neurophysiol. 68(4), 1190–1208 (1992)

    Article  Google Scholar 

  6. Ursino, M., La Cara, G.E., Ritrovato, M.: Direction selectivity of simple cells in the primary visual cortex: comparison of two alternative mathematical models. I: response to drifting gratings. Comput. Biol. Med. 37(3), 398–414 (2007)

    Article  Google Scholar 

  7. Chizhov, A.V.: Conductance-based refractory density model of primary visual cortex. J. Comput. Neurosci. 36, 297–319 (2014)

    Article  MathSciNet  Google Scholar 

  8. Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  9. Yakimova, E.G., Chizhov, A.V.: Experimental and modeling studies of orientational sensitivity of neurons in the lateral geniculate nucleus. Neurosci. Behav. Physiol. 45(4), 465–475 (2015)

    Article  Google Scholar 

  10. Chizhov, A.V., Graham, L.J., Turbin, A.A.: Simulation of neural population dynamics with a refractory density approach and a conductance-based threshold neuron model. Neurocomputing 70(1), 252–262 (2006)

    Article  Google Scholar 

  11. Chizhov, A.V., Graham, L.J.: Population model of hippocampal pyramidal neurons, linking a refractory density approach to conductance-based neurons. Phys. Rev. E 75, 011924 (2007)

    Article  MathSciNet  Google Scholar 

  12. Chizhov, A., Amakhin, D., Zaitsev, A.: Computational model of interictal discharges triggered by interneurons. PLoS ONE 12(10), e0185752 (2017)

    Article  Google Scholar 

  13. Shmuel, A., Grinvald, A.: Functional organization for direction of motion and its relationship to orientation maps in cat area 18. J. Neurosci. 16, 6945–6964 (1996)

    Article  Google Scholar 

  14. Monier, C., Fournier, J., Fregnac, Y.: In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices. J. Neurosci. Methods 169, 323–365 (2008)

    Article  Google Scholar 

  15. Grinvald, A., Lieke, E.E., Frostig, R.D., Hildesheim, R.: Cortical point-spread function and long-range lateral interactions revealed by real. J. Neurosci. 14(5), 2545–2568 (1994)

    Article  Google Scholar 

  16. Anderson, J.S., Carandini, M., Ferster, D.: Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. J. Neurophysiol. 84(2), 909–926 (2000)

    Article  Google Scholar 

  17. Priebe, N.J., Ferster, D.: Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex. Neuron 45(1), 133–145 (2005)

    Article  Google Scholar 

  18. Baudot, P., Levy, M., Marre, O., Monier, C., Pananceau, M., Fregnac, Y.: Animation of natural scene by virtual eye-movements evokes high precision and low noise in V1 neurons. Front. Neural Circ. 7, 206 (2013)

    Google Scholar 

  19. Chizhov, A.V., Amakhin, D.V.: Method of experimental synaptic conductance estimation: limitations of the basic approach and extension to voltage-dependent conductances. Neurocomputing 275, 2414–2425 (2017)

    Article  Google Scholar 

  20. Lien, A.D., Scanziani, M.: Cortical direction selectivity emerges at convergence of thalamic synapses. Nature 558, 80–86 (2018)

    Article  Google Scholar 

  21. Adesnik, H., Bruns, W., Taniguchi, H., Huang, J., Scanziani, M.: A neural circuit for spatial summation in visual cortex. Nature 490, 226–231 (2012)

    Article  Google Scholar 

  22. Kremkow, J., Jin, J., Wang, Y., Alonso, J.: Principles underlying sensory map topography in primary visual cortex. Nature 533(7601), 52–57 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

The reported study was supported by the Russian Foundation for Basic Research (RFBR) research project 19-015-00183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton V. Chizhov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chizhov, A.V., Yakimova, E.G., Smirnova, E.Y. (2020). Direction Selectivity Model Based on Lagged and Nonlagged Neurons. In: Kryzhanovsky, B., Dunin-Barkowski, W., Redko, V., Tiumentsev, Y. (eds) Advances in Neural Computation, Machine Learning, and Cognitive Research III. NEUROINFORMATICS 2019. Studies in Computational Intelligence, vol 856. Springer, Cham. https://doi.org/10.1007/978-3-030-30425-6_19

Download citation

Publish with us

Policies and ethics