Skip to main content

Sharing Information with Competitors

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11801))

Included in the following conference series:

  • 855 Accesses

Abstract

We study the mechanism design problem in the setting where agents are rewarded using information only, which is motivated by the increasing interest in secure multiparty computation. Specifically, we consider the setting of a joint computation where different agents have inputs of different quality and each agent is interested in learning as much as possible while maintaining exclusivity for information. Our high level question is how to design mechanisms that motivate all the agents (even those with high-quality inputs) to participate in the computation; we formally study problems such as set union, intersection, and average.

The second author received support from: the Danish Independent Research Council under Grant-ID DFF-6108-00169 (FoCC); the European Union’s under grant agreement No 731583 (SODA) and No 803096 (SPEC). Part of the work of the third author was done when working at Aarhus University. The third author was also supported in part by the National Natural Science Foundation of China Grants No. 61433014, 61602440, 61872334 and Shanghai Key Laboratory of Intelligent Information Processing, China. Grant No. IIPL-2016-006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the secure multiparty computation setting this trusted party is usually replaced by a cryptographic protocol. For the sake of simplicity, we do not further consider cryptographic protocols in this work.

  2. 2.

    Pareto effiency ensures no agent can be better off without making anyone worse off.

  3. 3.

    Welfare maximization is achieved by maximizing over all Pareto efficient outcomes.

  4. 4.

    [14] considers other facets, such as privacy, but still in lexicographic ordering.

References

  1. Archer, D.W., et al.: From keys to databases - real-world applications of secure multi-party computation. Comput. J. 61(12), 1749–1771 (2018)

    MathSciNet  Google Scholar 

  2. Aumann, R.J.: Game theory. In: Game Theory, pp. 1–53. Springer (1989)

    Google Scholar 

  3. Azar, P.D., Goldwasser, S., Park, S.: How to incentivize data-driven collaboration among competing parties. In: ITCS, pp. 213–225 (2016)

    Google Scholar 

  4. Ben-Efraim, A., Lindell, Y., Omri, E.: Efficient scalable constant-round MPC via garbled circuits. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 471–498. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_17

    Chapter  Google Scholar 

  5. Chen, Y., Nissim, K., Waggoner, B.: Fair information sharing for treasure hunting. In: AAAI, pp. 851–857 (2015)

    Google Scholar 

  6. Chen, Y., Waggoner, B.: Informational substitutes. In: FOCS, pp. 239–247 (2016)

    Google Scholar 

  7. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  8. Halpern, J., Teague, V.: Rational secret sharing and multiparty computation. In: STOC, pp. 623–632. ACM (2004)

    Google Scholar 

  9. Izmalkov, S., Micali, S., Lepinski, M.: Rational secure computation and ideal mechanism design. In: FOCS, pp. 585–594 (2005)

    Google Scholar 

  10. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure computation with oblivious transfer. In: ACM SIGSAC, pp. 830–842 (2016)

    Google Scholar 

  11. Kol, G., Naor, M.: Cryptography and game theory: designing protocols for exchanging information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–339. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_18

    Chapter  MATH  Google Scholar 

  12. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_16

    Chapter  Google Scholar 

  13. Mantena, R., Sankaranarayanan, R., Viswanathan, S.: Platform-based information goods: the economics of exclusivity. Decis. Support Syst. 50(1), 79–92 (2010)

    Article  Google Scholar 

  14. McGrew, R., Porter, R., Shoham, Y.: Towards a general theory of non-cooperative computation. In: TARK, pp. 59–71. ACM (2003)

    Google Scholar 

  15. Miltersen, P.B., Nielsen, J.B., Triandopoulos, N.: Privacy-enhancing auctions using rational cryptography. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 541–558. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_32

    Chapter  Google Scholar 

  16. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_40

    Chapter  Google Scholar 

  17. Nissim, K., Orlandi, C., Smorodinsky, R.: Privacy-aware mechanism design. In: ACM EC, pp. 774–789. ACM (2012)

    Google Scholar 

  18. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on OT extension. ACM Trans. Priv. Secur. 21(2), 7:1–7:35 (2018)

    Article  Google Scholar 

  19. Roth, A.: The Shapley Value: Essays in Honor of Lloyd S. Shapley. Cambridge University Press, Cambridge (1988)

    Book  Google Scholar 

  20. Segal, I., Whinston, M.: Exclusive contracts and protection of investments. RAND J. Econ. 31(4), 603–633 (2000)

    Article  Google Scholar 

  21. Shapley, L.S.: A value for n-person games. The Shapley value, pp. 31–40 (1988)

    Chapter  Google Scholar 

  22. Shoham, Y., Tennenholtz, M.: Non-cooperative computation: Boolean functions with correctness and exclusivity. Theor. Comput. Sci. 343(1), 97–113 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simina Brânzei , Claudio Orlandi or Guang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brânzei, S., Orlandi, C., Yang, G. (2019). Sharing Information with Competitors. In: Fotakis, D., Markakis, E. (eds) Algorithmic Game Theory. SAGT 2019. Lecture Notes in Computer Science(), vol 11801. Springer, Cham. https://doi.org/10.1007/978-3-030-30473-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30473-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30472-0

  • Online ISBN: 978-3-030-30473-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics