Skip to main content

Abstract

Spiking Neural Networks (SNNs) are a promising computational paradigm, both to understand biological information processing and for low-power, embedded chips. Although SNNs are known to encode information in the precise timing of spikes, conventional artificial learning algorithms do not take this into account directly. In this work, we implement the spike timing by training the synaptic delays in a single layer SNN. We use two different approaches: a classical gradient descent and a direct algebraic method that is based on a complex-valued encoding of the spikes. Both algorithms are equally able to correctly solve simple detection tasks. Our work provides new optimization methods for the data analysis of highly time-dependent data and training methods for neuromorphic chips.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bishop, C.M.: Pattern Recognition and Machine Learing. Springer, New York (2006)

    Google Scholar 

  2. Cao, Y., Chen, Y., Khosla, D.: Spiking deep convolutional neural networks for energy-efficient object recognition. Int. J. Comput. Vis. 113(1), 54–66 (2014). https://doi.org/10.1007/s11263-014-0788-3

    Article  MathSciNet  Google Scholar 

  3. Davies, M., et al.: Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1), 82–99 (2018). https://doi.org/10.1109/mm.2018.112130359

    Article  Google Scholar 

  4. Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press (2001)

    Google Scholar 

  5. Diehl, P.U., Zarrella, G., Cassidy, A., Pedroni, B.U., Neftci, E.: Conversion of artificial recurrent neural networks to spiking neural networks for low-power neuromorphic hardware. In: 2016 IEEE International Conference on Rebooting Computing (ICRC), IEEE, October 2016. https://doi.org/10.1109/icrc.2016.7738691

  6. Guyonneau, R., VanRullen, R., Thorpe, S.J.: Neurons tune to the earliest spikes through STDP. Neural Comput. 17(4), 859–879 (2005). https://doi.org/10.1162/0899766053429390

    Article  MATH  Google Scholar 

  7. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  8. O’Connor, P., Welling, M.: Deep spiking networks. arxiv (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura State .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

State, L., Vilimelis Aceituno, P. (2019). Training Delays in Spiking Neural Networks. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. ICANN 2019. Lecture Notes in Computer Science(), vol 11727. Springer, Cham. https://doi.org/10.1007/978-3-030-30487-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30487-4_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30486-7

  • Online ISBN: 978-3-030-30487-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics