Skip to main content

Dense Receptive Field Network: A Backbone Network for Object Detection

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing (ICANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11729))

Included in the following conference series:

Abstract

Although training object detectors with ImageNet pre-trained models is very common, the models designed for classification are not suitable enough for detection tasks. So, designing a special backbone network for detection tasks is one of the best solutions. In this paper, a backbone network named Dense Receptive Field Network (DRFNet) is proposed for object detection. DRFNet is based on Darknet-60 (our modified version of Darknet-53) and contains a novel architecture named Dense Receptive Field Block (DenseRFB) module. DenseRFB is a densely connected mode of RFB and can form much denser effective receptive fields, which can greatly improve the feature presentation of DRFNet and keep its fast speed. The proposed DRFNet is firstly tested with ScratchDet for fast evaluation. Moreover, as a pre-trained model on ImageNet, DRFNet is also tested with SSD. All the experiments show that DRFNet is an effective and efficient backbone network for object detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  2. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944. IEEE (2017). https://doi.org/10.1109/cvpr.2017.106

  3. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2999–3007. IEEE (2017). https://doi.org/10.1109/iccv.2017.324

  4. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988. IEEE (2017). https://doi.org/10.1109/iccv.2017.322

  5. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  6. Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J.: DetNet: design backbone for object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 339–354. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_21

    Chapter  Google Scholar 

  7. Zhu, R., et al.: ScratchDet: exploring to train single-shot object detectors from scratch. arXiv preprint arXiv:1810.08425 (2018)

  8. Ren, S., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016). https://doi.org/10.1109/tpami.2016.2577031

    Article  Google Scholar 

  9. Dai, J., et al.: R-FCN: object detection via region-based fully convolutional networks. arXiv preprint arXiv:1605.06409 (2016)

  10. Liu, S., Huang, D., Wang, Y.: Receptive field block net for accurate and fast object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 404–419. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_24

    Chapter  Google Scholar 

  11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009) https://doi.org/10.1109/cvprw.2009.5206848

  12. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  13. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4

    Article  Google Scholar 

  14. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  15. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525. IEEE (2017). https://doi.org/10.1109/cvpr.2017.690

  16. Fu, C.Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: DSSD: deconvolutional single shot detector. arXiv preprint arXiv:1701.06659 (2017)

  17. Zhou, P., Ni, B., Geng, C., Hu, J., Xu, Y.: Scale-transferrable object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 528–537 (2018). https://doi.org/10.1109/cvpr.2018.00062

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). https://doi.org/10.1109/cvpr.2016.90

  19. Szegedy, C., et al.: Inception-v4, inception-ResNet and the impact of residual connections on learning. arXiv preprint arXiv:1602.07261 (2016)

  20. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  21. Luo, W., et al.: Understanding the effective receptive field in deep convolutional neural networks. arXiv preprint arXiv:1701.04128 (2017)

  22. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269. IEEE (2017). https://doi.org/10.1109/cvpr.2017.243

  23. Xie, J., He, T., Zhang, Z., Zhang, H., Zhang, Z., Li, M.: Bag of tricks for image classification with convolutional neural networks. arXiv preprint arXiv:1812.01187 (2018)

  24. Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K.: Denseaspp for semantic segmentation in street scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3684–3692 (2018). https://doi.org/10.1109/cvpr.2018.00388

  25. Zhang, Z., Qiao, S., Xie, C., Shen, W., Wang, B., Yuille, A.L.: Single-shot object detection with enriched semantics. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, June 2018. https://doi.org/10.1109/cvpr.2018.00609

  26. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4203–4212 (2018). https://doi.org/10.1109/cvpr.2018.00442

Download references

Acknowledgements

This work was being supported by the National Natural Science Foundation of China (Grant No. 61402410), the Zhejiang Provincial Science and Technology Planning Key Project of China (Grant No. 2018C01064), and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY19F020027, LY18F020029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, F., Yang, C., Ge, Y., Lu, S., Shao, Q. (2019). Dense Receptive Field Network: A Backbone Network for Object Detection. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing. ICANN 2019. Lecture Notes in Computer Science(), vol 11729. Springer, Cham. https://doi.org/10.1007/978-3-030-30508-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30508-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30507-9

  • Online ISBN: 978-3-030-30508-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics