Skip to main content

Maximum Matchings and Minimum Blocking Sets in \(\varTheta _6\)-Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11789))

Included in the following conference series:

  • 590 Accesses

Abstract

\(\varTheta _6\)-graphs are important geometric graphs that have many applications especially in wireless sensor networks. They are equivalent to Delaunay graphs where empty equilateral triangles take the place of empty circles. We investigate lower bounds on the size of maximum matchings in these graphs. The best known lower bound is n/3, where n is the number of vertices of the graph, which comes from half-\(\varTheta _6\)-graphs that are subgraphs of \(\varTheta _6\)-graphs. Babu et al. (2014) conjectured that any \(\varTheta _6\)-graph has a (near-)perfect matching (as is true for standard Delaunay graphs). Although this conjecture remains open, we improve the lower bound to \((3n-8)/7\).

We also relate the size of maximum matchings in \(\varTheta _6\)-graphs to the minimum size of a blocking set. Every edge of a \(\varTheta _6\)-graph on point set P corresponds to an empty triangle that contains the endpoints of the edge but no other point of P. A blocking set has at least one point in each such triangle. We prove that the size of a maximum matching is at least \(\beta (n)/2\) where \(\beta (n)\) is the minimum, over all \(\varTheta _6\)-graphs with n vertices, of the minimum size of a blocking set. In the other direction, lower bounds on matchings can be used to prove bounds on \(\beta \), allowing us to show that \(\beta (n)\ge 3n/4-2\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ábrego, B.M., et al.: Matching points with circles and squares. In: Akiyama, J., Kano, M., Tan, X. (eds.) JCDCG 2004. LNCS, vol. 3742, pp. 1–15. Springer, Heidelberg (2005). https://doi.org/10.1007/11589440_1

    Chapter  Google Scholar 

  2. Ábrego, B.M., et al.: Matching points with squares. Discrete Comput. Geom. 41(1), 77–95 (2009)

    Article  MathSciNet  Google Scholar 

  3. Aichholzer, O., et al.: Blocking Delaunay triangulations. Comput. Geom.: Theory Appl. 46(2), 154–159 (2013)

    Article  MathSciNet  Google Scholar 

  4. Alzoubi, K.M., Li, X., Wang, Y., Wan, P., Frieder, O.: Geometric spanners for wireless ad hoc networks. IEEE Trans. Parallel Distrib. Syst. 14(4), 408–421 (2003)

    Article  Google Scholar 

  5. Aronov, B., Dulieu, M., Hurtado, F.: Witness (Delaunay) graphs. Comput. Geom.: Theory Appl. 44(6–7), 329–344 (2011)

    Article  MathSciNet  Google Scholar 

  6. Aronov, B., Dulieu, M., Hurtado, F.: Witness Gabriel graphs. Comput. Geom.: Theory Appl. 46(7), 894–908 (2013)

    Article  MathSciNet  Google Scholar 

  7. Aurenhammer, F., Paulini, G.: On shape Delaunay tessellations. Inf. Process. Lett. 114(10), 535–541 (2014)

    Article  MathSciNet  Google Scholar 

  8. Babu, J., Biniaz, A., Maheshwari, A., Smid, M.H.M.: Fixed-orientation equilateral triangle matching of point sets. Theor. Comput. Sci. 555, 55–70 (2014). Also in WALCOM 2013

    Article  MathSciNet  Google Scholar 

  9. Bauer, D., Broersma, H., Schmeichel, E.: Toughness in graphs–a survey. Graphs Comb. 22(1), 1–35 (2006)

    Article  MathSciNet  Google Scholar 

  10. Berge, C.: Sur le couplage maximum d’un graphe. Comptes Rendus de l’Académie des Sciences, Paris 247, 258–259 (1958)

    MathSciNet  MATH  Google Scholar 

  11. Biedl, T., Biniaz, A., Irvine, V., Jain, K., Kindermann, P., Lubiw, A.: Maximum matchings and minimum blocking sets in \(\theta _6\)-graphs. Arxiv report (2019). https://arxiv.org/abs/1901.01476

  12. Biniaz, A., Maheshwari, A., Smid, M.H.M.: Higher-order triangular-distance Delaunay graphs: graph-theoretical properties. Comput. Geom.: Theory Appl. 48(9), 646–660 (2015). Also in CALDAM 2015

    Article  MathSciNet  Google Scholar 

  13. Biniaz, A., Maheshwari, A., Smid, M.H.M.: Matchings in higher-order Gabriel graphs. Theor. Comput. Sci. 596, 67–78 (2015)

    Article  MathSciNet  Google Scholar 

  14. Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between theta-graphs, delaunay triangulations, and orthogonal surfaces. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 266–278. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16926-7_25

    Chapter  Google Scholar 

  15. Bose, P., De Carufel, J.L., Hill, D., Smid, M.H.M.: On the spanning and routing ratio of theta-four. In: Chan, T.M. (ed.) Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2361–2370. SIAM (2019)

    Chapter  Google Scholar 

  16. Bose, P., Fagerberg, R., Van Renssen, A., Verdonschot, S.: Competitive routing in the half-\(\theta _6\)-graph. In: Rabani, Y. (ed.) Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1319–1328. SIAM (2012)

    Google Scholar 

  17. Bose, P., Morin, P., van Renssen, A., Verdonschot, S.: The \(\theta _5\)-graph is a spanner. Comput. Geom. 48(2), 108–119 (2015). Also in WG 2013

    Article  MathSciNet  Google Scholar 

  18. Chew, P.: There are planar graphs almost as good as the complete graph. J. Comput. Syst. Sci. 39(2), 205–219 (1989)

    Article  MathSciNet  Google Scholar 

  19. Clarkson, K.L.: Approximation algorithms for shortest path motion planning. In: Aho, A.V. (ed.) Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC), pp. 56–65. ACM (1987)

    Google Scholar 

  20. Damian, M., Iacono, J., Winslow, A.: Spanning properties of Theta-Theta-6. arXiv:1808.04744 (2018)

  21. Dillencourt, M.B.: Toughness and Delaunay triangulations. Discrete Comput. Geom. 5, 575–601 (1990)

    Article  MathSciNet  Google Scholar 

  22. Drysdale III, R.L.S.: A practical algorithm for computing the Delaunay triangulation for convex distance functions. In: Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 159–168 (1990)

    Google Scholar 

  23. Fischer, M., Lukovszki, T., Ziegler, M.: Geometric searching in walkthrough animations with weak spanners in real time. In: Bilardi, G., Italiano, G.F., Pietracaprina, A., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 163–174. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-68530-8_14

    Chapter  Google Scholar 

  24. Keil, J.M.: Approximating the complete Euclidean graph. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 208–213. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-19487-8_23

    Chapter  Google Scholar 

  25. Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete Euclidean graph. Discrete Comput. Geom. 7, 13–28 (1992)

    Article  MathSciNet  Google Scholar 

  26. Morin, P., Verdonschot, S.: On the average number of edges in Theta graphs. Online J. Anal. Comb., page to appear (2014). Also in ANALCO 2014

    Google Scholar 

  27. Nishizeki, T., Baybars, I.: Lower bounds on the cardinality of the maximum matchings of planar graphs. Discrete Math. 28(3), 255–267 (1979)

    Article  MathSciNet  Google Scholar 

  28. Tutte, W.T.: The factorization of linear graphs. J. Lond. Math. Soc. 22, 107–111 (1947)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was done by a University of Waterloo problem solving group. We thank the other participants, Alexi Turcotte and Anurag Murty Naredla, for inspiring discussions, and the anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Kindermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biedl, T., Biniaz, A., Irvine, V., Jain, K., Kindermann, P., Lubiw, A. (2019). Maximum Matchings and Minimum Blocking Sets in \(\varTheta _6\)-Graphs. In: Sau, I., Thilikos, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2019. Lecture Notes in Computer Science(), vol 11789. Springer, Cham. https://doi.org/10.1007/978-3-030-30786-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30786-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30785-1

  • Online ISBN: 978-3-030-30786-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics