Skip to main content

Hyperthermia Study in Breast Cancer Treatment Using Three Applicators

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2019)

Abstract

This paper assesses the initial collateral effects which result from the use of electromagnetic (EM) hyperthermia treatment. In this particular case, the focus of study is breast cancer treatment by means of an electromagnetic simulation model. A breast model was created by using the electrical properties to tissues, and it was radiated with three applicators at 2.45 GHz to generate increased of temperature, analyzing the distribution of power density inside the breast. The third applicator, it is a new applicator developed in the Groove Gap Waveguide technology (GGW). A comparison between the power density in the tumor and other breast tissues (fat and lobes) is presented. Results show that the location of the microwave applicator is a factor that determines the unwanted overheating of tissues closed tumor. The preliminary results indicate that with the new applicator developed in the Groove Gap Waveguide technology (GGW) is possible to focus the EM energy. Moreover, the tissues close to the tumor obtain a lower concentration of power density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. International, “World Cancer Research Fund,” Breast cancer statistics. https://www.wcrf.org/dietandcancer/cancer-trends/breast-cancer-statistics

  2. Chicheł, A., Skowronek, J., Kubaszewska, M., Kanikowski, M.: Hyperthermia - description of a method and a review of clinical applications. Reports Pract. Oncol. Radiother. 12(5), 267–275 (2007)

    Article  Google Scholar 

  3. Lee, T.H., Bu, J., Kim, B.H., Poellmann, M.J., Hong, S., Hyun, S.H.: Sub-lethal hyperthermia promotes epithelial-to-mesenchymal-like transition of breast cancer cells: implication of the synergy between hyperthermia and chemotherapy. RSC Adv. 9(1), 52–57 (2019)

    Article  Google Scholar 

  4. Nguyen, P.T., Abbosh, A.M.: Focusing techniques in breast cancer treatment using non-invasive microwave hyperthermia. In: ISAP 2015, pp. 1–3 (2015)

    Google Scholar 

  5. Iero, D.A.M., Crocco, L., Isernia, T., Korkmaz, E.: Optimal focused electromagnetic hyperthermia treatment of breast cancer. In: 2016 10th European Conference on Antennas Propagation, EuCAP 2016, pp. 1–2 (2016)

    Google Scholar 

  6. Merunka, I., Fiser, O., Vojackova, L., Vrba, J., Vrba, D.: Utilization potential of balanced antipodal Vivaldi antenna for microwave hyperthermia treatment of breast cancer. In: 8th European Conference on Antennas Propagation, EuCAP 2014, vol. 6, pp. 706–710 (2014)

    Google Scholar 

  7. Vander Vorst, A., Rosen, A., Kotsuka, Y.: RF/Microwave Interaction with Biological Tissues. Wiley, Hoboken (2006)

    Google Scholar 

  8. Garaj-Vrhovac, V., Fucic, A., Horvat, D.: The correlation between the frequency of micronuclei and specific chromosome aberrations in human lymphocytes exposed to microwave radiation in vitro. Mutat. Res. 281, 181–186 (1992)

    Article  Google Scholar 

  9. Tamburello, C.C., Zanforlin, L., Tiné, G., Tamburello, A.E.: Analysis of microwave effects on isolated hearts.pdf, pp. 804–808 (1991)

    Google Scholar 

  10. Ely, T.S., Goldman, D.E., Hearon, J.Z.: Heating characteristics of laboratory animals exposed to ten-centimeter microwaves. IEEE Trans. Biomed. Eng. BME-11(4), 123–137 (1964)

    Article  Google Scholar 

  11. Nathanson, S.D., et al.: Changes associated with metastasis in B16-F1 melanoma cells surviving heat. Arch. Surg. 125(2), 216–219 (1990)

    Article  Google Scholar 

  12. Nathanson, S.D., Nelson, L., Anaya, P., Havstad, S., Hetzel, F.W.: Development of lymph node and pulmonary metastases after local irradiation and hyperthermia of footpad melanomas. Clin. Exp. Metastasis 9(4), 377–392 (1991)

    Article  Google Scholar 

  13. Gunderson, L.L., Tepper, J.E.: Clinical Radiation Oncology, 4th edn. Elsevier Inc., Philadelphia (2016)

    Google Scholar 

  14. Jones, E.L., et al.: Thermochemoradiotherapy improves oxygenation in locally advanced breast cancer. Clin. Cancer Res. 10(13), 4287–4293 (2004)

    Article  Google Scholar 

  15. Vujaskovic, Z., et al.: A phase I/II study of neoadjuvant liposomal doxorubicin, paclitaxel, and hyperthermia in locally advanced breast cancer. Int. J. Hyperth. 26(5), 514–521 (2010)

    Article  Google Scholar 

  16. Refaat, T., et al.: Hyperthermia and radiation therapy for locally advanced or recurrent breast cancer. Breast 24(4), 418–425 (2015)

    Article  Google Scholar 

  17. Chakaravarthi, G., Arunachalam, K.: Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia. Int. J. Hyperth. 31(7), 737–748 (2015)

    Article  Google Scholar 

  18. Yong-Xing, D., Xiao-Li, X., Li-Li, W.: The analysis and simulation of planar spiral antenna for microwave hyperthermia, pp. 1–4 (2007)

    Google Scholar 

  19. Bt Lias, K., Narihan, M.Z.A., Buniyamin, N.: An antenna with an embedded EBG structure for non invasive hyperthermia cancer treatment. In: Proceedings of the 2014 IEEE Conference on Biomedical Engineering and Sciences, IECBES 2014, “Miri, Where Engineering in Medicine and Biology and Humanity Meet,” pp. 618–621, December 2014

    Google Scholar 

  20. Vrba, D., Vrba, J.: Applicators for local microwave hyperthermia based on metamaterial technology. In: 8th European Conference on Antennas and Propagation, EuCAP 2014, pp. 68–71 (2014)

    Google Scholar 

  21. Curto, S., Ruvio, G., Ammann, M.J., Prakash, P.: A wearable applicator for microwave hyperthermia of breast cancer: performance evaluation with patient-specific anatomic models. In: Proceedings of the 2015 International Conference on Electromagnetics in Advanced Applications, ICEAA 2015, pp. 1159–1162 (2015)

    Google Scholar 

  22. Guarnizo Mendez, H.F., Polochè Arango, M.A., Pantoja Acosta, J.J.: Hyperthermia study in breast cancer treatment. In: Figueroa-García, J.C., Villegas, Juan G., Orozco-Arroyave, J.R., Maya Duque, P.A. (eds.) WEA 2018, Part II. CCIS, vol. 916, pp. 256–267. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00353-1_23

    Chapter  Google Scholar 

  23. Nguyen, P.T., Abbosh, A.M., Crozier, S.: Realistic simulation environment to test microwave hyperthermia treatment of breast cancer. In: IEEE Antennas and Propagation Society AP-S International Symposium, pp. 1188–1189 (2014)

    Google Scholar 

  24. Korkmaz, E., Isık, O., Sagkol, H.: A directive antenna array applicator for focused electromagnetic hyperthermia treatment of breast cancer. In: 2015 9th European Conference on Antennas and Propagation, vol. 1, pp. 1–4 (2015)

    Google Scholar 

  25. Porter, E., Fakhoury, J., Oprisor, R., Coates, M., Popovic, M.: Improved tissue phantoms for experimental validation of microwave breast cancer detection. In: 2010 Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), pp. 4–8 (2010)

    Google Scholar 

  26. Nikita, K.S. (ed.): Handbook of Biomedical Telemetry. Wiley, Hoboken (2014)

    Google Scholar 

  27. Bohórquez, J.C., et al.: Planar substrate integrated waveguide cavity-backed antenna. IEEE Antennas Wirel. Propag. Lett. 8, 1139–1142 (2009)

    Article  Google Scholar 

  28. Boria, V.E., Sánchez-Escuderos, D., Bernardo-Clemente, B., Berenguer, A., Baquero-Escudero, M.: Groove gap waveguide as an alternative to rectangular waveguide for H-plane components. Electron. Lett. 52(11), 939–941 (2016)

    Article  Google Scholar 

  29. Nawaz, M.I., Huiling, Z., Kashif, M.: Substrate integrated waveguide (SIW) to microstrip transition at X-Band. In: 2014 International Conference on Circuits, Systems and Control, pp. 61–63 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector Fabian Guarnizo Mendez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guarnizo Mendez, H.F., Polochè Arango, M.A., Pantoja Acosta, J.J., Coronel Rico, J.F., Amaya Opayome, J.S. (2019). Hyperthermia Study in Breast Cancer Treatment Using Three Applicators. In: Figueroa-García, J., Duarte-González, M., Jaramillo-Isaza, S., Orjuela-Cañon, A., Díaz-Gutierrez, Y. (eds) Applied Computer Sciences in Engineering. WEA 2019. Communications in Computer and Information Science, vol 1052. Springer, Cham. https://doi.org/10.1007/978-3-030-31019-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31019-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31018-9

  • Online ISBN: 978-3-030-31019-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics