Skip to main content

Human Contribution to Amazonian Plant Diversity: Legacy of Pre-Columbian Land Use in Modern Plant Communities

  • Chapter
  • First Online:
Neotropical Diversification: Patterns and Processes

Abstract

Amazonia is the world’s largest tropical forest and is globally important in terms of its ecosystem services and extraordinarily high levels of biodiversity. The origin of this biodiversity has long been attributed to purely natural drivers, with little consideration given to the legacy of millennia of human land use. Here, the potential contribution of pre-Columbian human activity (prior 1492 CE) to current patterns of plant diversity in Amazonia is explored via long-term (palaeoecology, archaeology) and short-term (botany, plant ecology) studies. The aim of the chapter is to examine the information available to date, and discuss recent advances and persisting shortcomings relevant to the extent to which pre-Columbian human societies influenced patterns of Amazonian plant diversity. This topic has been the subject of long-standing scientific debate over several decades, and among diverse disciplines. In recent years, this debate has intensified following the development of new techniques and data. The findings indicate that humans have had an impact upon Amazonian plant diversity for over 13,000 years. Late Pleistocene/early Holocene humans domesticated numerous plant species and may have inadvertently caused long-lasting ecosystem changes by contributing to Pleistocene megafauna extinction. Based on our literature review, we identify four key types of pre-Columbian anthropogenic impact, leaving a clear legacy upon current patterns of plant diversity: (1) construction of vast earthworks, which has altered forest and savannah cover through changes in micro-topography, fire use and hydrology, (2) widespread distribution and dispersal of domesticated plants, (3) the creation of exceptionally fertile, anthropogenic soils, which enabled continuous, intensive agro-forestry, and (4) the enrichment of plant communities with edible and useful species. We argue that knowledge of the degree to which humans have shaped plant diversity over the past several millennia has relevance for developing sustainable land use and improving our understanding of the likely responses of Amazonian ecosystems to environmental and anthropogenic disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvez-Valles CM, Balslev H, García-Villacorta R et al (2018) Palm species richness, latitudinal gradients, sampling effort, and deforestation in the Amazon region. Acta Bot Bras 32(4). https://doi.org/10.1590/010233062017abb0400

  • Antonelli A, Zizka A, Carvalho FA et al (2018) Amazonia is the primary source of Neotropical biodiversity. Proc Natl Acad Sci U S A 115(23):6034–6039. https://doi.org/10.1073/pnas.1713819115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aymard G (2015) Bosques de los Llanos de Venezuela: estructura, composición florística, diversidad y estado actual de conservación. In: López-Falcón R, Hétier JM, López HD et al (eds) Tierras Llaneras de Venezuela. IRD-CIDIAT, Mérida, pp 241–268

    Google Scholar 

  • Balée W (1989) The culture of Amazonian forests. In: Posey DA, Balée W (eds) Resource management in Amazonia: indigenous and folk strategies. NYGB Press, New York, pp 1–21

    Google Scholar 

  • Balée W (1993) Indigenous transformation of Amazonian forests: an example from Maranhão, Brazil. L’Homme 33:231–254

    Google Scholar 

  • Balée W (1994) Footprints of the forest: Ka’apar ethnobotany-the historical ecology of plant utilization by an Amazonian people. Columbia University Press, Columbia

    Google Scholar 

  • Balée W (2006) The research program of historical ecology. Annu Rev Anthropol 35:75–98

    Google Scholar 

  • Balée W (2013) Cultural forests of the Amazon: a historical ecology of people and their landscapes. University of Alabama Press, Tuscaloosa

    Google Scholar 

  • Balée W, Erickson CL (2006) Time, complexity, and historical ecology. Columbia University Press, New York

    Google Scholar 

  • Barlow J, Gardner TA, Lees AC et al (2012) How pristine are tropical forests? An ecological perspective on the pre-Columbian human footprint in Amazonia and implications for contemporary conservation. Biol Conserv 151:45–49

    Google Scholar 

  • Barnosky AD, Lindsey EL (2010) Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quat Int 217:10–29

    Google Scholar 

  • Berrío JC, Wouters H, Hooghiemstra H et al (2012) Using paleoecological data to define main vegetation dynamics along the savannah-forest ecotone in Colombia: impliactions for accurate assessment of human impacts. In: Myster RW (ed) Ecotones between forest and grassland. Springer, New York, pp 209–225

    Google Scholar 

  • Bezerra J, Turhout E, Melo Vasquez I et al (2016) The promises of the Amazonian soil: shifts on discourses of terra preta and biochar. J Environ Policy Plan 21(5):623–635. https://doi.org/10.1080/1523908X.2016.1269644

    Article  Google Scholar 

  • Blatrix R, Roux B, Béarez P et al (2018) The unique functioning of a pre-Columbian Amazonian floodplain fishery. Sci Rep 8:5998

    PubMed  PubMed Central  Google Scholar 

  • Bruno JF, Stachowicz JL, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18:119–125

    Google Scholar 

  • Bush MB, Colinvaux PA (1988) A 7000-year pollen record from the Amazon lowlands, Ecuador. Vegetatio 76:141–154

    Google Scholar 

  • Bush MB, McMichael CHN (2016) Holocene variability of an Amazonian hyperdominant. J Ecol 104:1370–1378

    Google Scholar 

  • Bush MB, Silman MR (2007) Amazonian exploitation revisited: ecological asymmetry and the policy pendulum. Front Ecol Environ 5:457–465

    Google Scholar 

  • Bush MB, Piperno DR, Colinvaux PA (1989) A 6,000 year history of Amazonian maize cultivation. Nature 340:303–305

    Google Scholar 

  • Bush MB, Silman MR, de Toledo MB et al (2007a) Holocene fire and occupation in Amazonia: records from two lake districts. Philos Trans R Soc Lond B Biol Sci 362:209–218

    PubMed  PubMed Central  Google Scholar 

  • Bush MB, Silman MR, Listopad CMCS (2007b) A regional study of Holocene climate change and human occupation in Peruvian Amazonia. J Biogeogr 34:1342–1356

    Google Scholar 

  • Bush MB, Restrepo A, Collins AF (2014) Galápagos history, restoration and a shifted baseline. Restor Ecol 22:296–298

    Google Scholar 

  • Bush MB, McMichael CH, Piperno DR et al (2015) Anthropogenic influence on Amazonian forest in pre-history: an ecological perspective. J Biogeogr 42:2277–2288

    Google Scholar 

  • Bush MB, Correa-Metrio A, McMichael CH et al (2016) A 6900-year history of landscape modification by humans in lowland Amazonia. Quat Sci Rev 141:52–64

    Google Scholar 

  • Carmenta R, Coudel E, Stewards AM (2018) Forbidden fire: does criminalising fire hinder conservation efforts in swidden landscapes of the Brazilian Amazon? Geogr J 184:1–15

    Google Scholar 

  • Carson JF, Whitney BS, Mayle FE et al (2014) Environmental impact of geometric earthwork construction in pre-Columbian Amazonia. Proc Natl Acad Sci U S A 111:10497–10502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carson JF, Mayle FE, Whitney BS et al (2016) Pre-Columbian ring ditch construction and land use on a “chocolate forest island” in the Bolivian Amazon. J Quat Sci 31:337–347

    Google Scholar 

  • Chambouleyron R, Barbosa BC, Bombardi FA et al (2011) ‘Formidable contagion’: epidemics, work and recruitment in Colonial Amazonia (1660–1750). Hist Cienc Saúde Manguinhos 18:987–1004

    PubMed  Google Scholar 

  • Clement CR (1999) 1492 and the loss of Amazonian crop genetic resources. I. The relation between domestication and human population decline. Econ Bot 53:188–202

    Google Scholar 

  • Clement CR (2014) Landscape domestication and archaeology. In: Smith C (ed) Encyclopedia of global archaeology. Springer, New York, pp 4388–4394

    Google Scholar 

  • Clement CR, McCann JM, Smith NJ (2003) Agrobiodiversity in Amazonia and its relationship with dark earths. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian dark earths: origin, properties, management. Springer, Berlin, pp 159–178

    Google Scholar 

  • Clement CR, de Cristo-Araújo M, Coppens d’Eeckenbrugge G et al (2010) Origin and domestication of native Amazonian crops. Diversity 2:72–106

    Google Scholar 

  • Clement CR, Denevan WM, Heckenberger MJ et al (2015a) The domestication of Amazonia before European conquest. Proc R Soc B Biol Sci 282:20150813

    Google Scholar 

  • Clement CR, Denevan WM, Heckenberger MJ et al (2015b) Response to comment by McMichael, Piperno and Bush. Proc R Soc B Biol Sci 282:20152459

    Google Scholar 

  • Clement CR, Rodrigues DP, Alves-Pereira A et al (2016) Crop domestication in the upper Madeira River basin. Bol Mus Para Emílio Goeldi Cienc Hum 11:193–205

    Google Scholar 

  • Clement CR, Cristo-Araújo M, Coppens d’Eeckenbrugge G et al (2017) Origin and dispersal of domesticated peach palm. Front Ecol Evol 5:148

    Google Scholar 

  • Colinvaux P (2007) Amazon expeditions: my quest for the ice-age equator. Yale University Press, New Haven

    Google Scholar 

  • Crevels M, Van der Voort H (2008) The Guaporé-Mamoré region as a linguistic area. In: Muysken P (ed) From linguistic areas to areal linguistics. John Benjamins Press, Amsterdam, pp 151–179

    Google Scholar 

  • Crosby AW (2004) Ecological imperialism: the biological expansion of Europe, 900–1900. Cambridge University Press, Cambridge

    Google Scholar 

  • da Silva Meneses MEN, Lima da Costa M, Behling H (2013) Late Holocene vegetation and fire dynamics from a savanna-forest ecotone in Roraima state, northern Brazilian Amazon. J S Am Earth Sci 42:17–26

    Google Scholar 

  • de Souza JG, Schaan DP, Robinson M et al (2018) Pre-Columbian earth-builders settled along the entire southern rim of the Amazon. Nat Commun 9:1125

    PubMed  PubMed Central  Google Scholar 

  • de Toledo MB, Bush MB (2007) A Mid-Holocene environmental change in Amazonian savannas. J Biogeogr 34:1313–1326

    Google Scholar 

  • Denevan WM (1992a) The pristine myth: the landscapes of the Americas in 1492. Ann Assoc Am Geogr 82:369–385

    Google Scholar 

  • Denevan WM (1992b) Stone vs metal axes: the ambiguity of shifting cultivation in prehistoric Amazonia. J Steward Anthropol Soc 20:153–165

    Google Scholar 

  • Denevan WM (1996) A bluff model of riverine settlement in prehistoric Amazonia. Ann Assoc Am Geogr 86:654–681

    Google Scholar 

  • Denevan WM, Treacy JM, Alcorn JB et al (1984) Indigenous agroforestry in the Bora Indian management of swidden fallows. Interciencia 9:346–357

    Google Scholar 

  • Dexter K, Chave J (2016) Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees. PeerJ 4:e2402

    PubMed  PubMed Central  Google Scholar 

  • Dobyns HF (1966) Estimating aboriginal American population: an appraisal of techniques with a new hemispheric estimate. Curr Anthropol 7:395–416

    Google Scholar 

  • Doughty CE (2010) The development of agriculture in the Americas: an ecological perspective. Ecosphere 1:art21

    Google Scholar 

  • Doughty CE, Wolf A, Malhi Y (2013) The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nat Geosci 6:761–764

    CAS  Google Scholar 

  • Doughty CE, Wolf A, Morueta-Holme N et al (2016) Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. Ecography 39:194–203

    Google Scholar 

  • Erickson CL (2001) Pre-Columbian roads of the Amazon. Expedition 43:21–30

    Google Scholar 

  • Erickson CL (2006) The domesticated landscapes of the Bolivian Amazon. In: Balée W, Erickson CL (eds) Time and complexity in historical ecology: studies in the Neotropical Lowlands. Columbia University Press, New York, pp 235–278

    Google Scholar 

  • Erickson CL (2008) Amazonia: the historical ecology of a domesticated landscape. In: Silverman H, Isbell WH (eds) Handbook of South American archaeology. Springer, Berlin, pp 157–183

    Google Scholar 

  • Erickson CL, Balée WL (2006) The historical ecology of a complex landscape in Bolivia. In: Balée W, Erickson CL (eds) Time and complexity in historical ecology: studies in the Neotropical Lowlands. Columbia University Press, New York, pp 187–233

    Google Scholar 

  • Eva HD, Huber O, Achard F et al (2005) Synthesis of the results from an expert consultation workshop organized by the European Commission in collaboration with the Amazon Cooperation Treaty Organization – JRC Ispra, 7–8 June 2005, EC, Luxembourg, p 40

    Google Scholar 

  • Flantua SGA, Hooghiemstra H, Grimm EC et al (2015) Updated site compilation of the Latin American Pollen Database. Rev Palaeobot Palynol 223:104–115

    Google Scholar 

  • Flores BM, Holmgren M, Xu C et al (2017) Floodplains as an Achilles’ heel of Amazonian forest resilience. Proc Natl Acad Sci U S A 114:4442–4446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galluzzi G, Dufour D, Thomas E et al (2015) An integrated hypothesis on the domestication of Bactris gasipaes. PLoS One 10:e0144644

    PubMed  PubMed Central  Google Scholar 

  • Gentry AH (1993) A field guide to the families and genera of woody plants of northwest South America. Conservation International, Washington, DC

    Google Scholar 

  • Glaser B, Birk JJ (2012) State of the scientific knowledge on properties and genesis of anthropogenic dark earths in Central Amazonia (terra preta de Índio). Geochim Cosmochim Acta 82:39–51

    CAS  Google Scholar 

  • Glaser B, Haumaier L, Guggenberger G et al (2001) The “terra preta” phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41

    CAS  PubMed  Google Scholar 

  • Goldberg A, Mychajliw AM, Hadly EA (2016) Post-invasion demography of prehistoric humans in South America. Nature 532:232–235

    CAS  PubMed  Google Scholar 

  • Goulding M, Barthem R, Ferreira EJG (2003) The Smithsonian atlas of the Amazon. Smithsonian Books, Washington, DC

    Google Scholar 

  • Gross DR (1975) Protein capture and cultural development in the Amazon Basin. Am Anthropol 77:526–549

    Google Scholar 

  • Guix JC (2005) Evidence of old anthropic effects in forests at the confluence of the Caurés and Negro Rivers, NW Amazonia: the role of Indians and Caboclos. Grup Estud Ecol 8:1–27

    Google Scholar 

  • Heckenberger M, Neves EG (2009) Amazonian archaeology. Annu Rev Anthropol 38:251–266

    Google Scholar 

  • Heckenberger MJ, Kuiluro A, Kuikuro UT et al (2003) Amazonia 1492: pristine forest or cultural parkland? Science 301:1710–1714

    CAS  PubMed  Google Scholar 

  • Heckenberger MJ, Russell JC, Fausto C et al (2008) Pre-Columbian urbanism, anthropogenic landscapes, and the future of the Amazon. Science 321:1214–1217

    CAS  PubMed  Google Scholar 

  • Hemming J (2006) Romance and reality: the first European vision of Brazilian Indians. In: Posey DA, Balick MJ (eds) Human Impacts on Amazonia: the role of traditional ecological knowledge in conservation and development. Columbia University Press, New York, pp 5–16

    Google Scholar 

  • Hilbert L, Góes Neves E, Pugliese F et al (2017) Evidence for mid-Holocene rice domestication in the Americas. Nat Ecol Evol 1:1693–1698

    PubMed  Google Scholar 

  • Huber O, Duno de Stefano R, Aymard G et al (2006) Flora and vegetation of the Venezuelan Llanos: a review. In: Pennington RT, Lewis GP, Ratter JA (eds) Neotropical savannas and dry forests: plant diversity, biogeography and conservation. Taylor & Francis Group, LLC de Boca Ratón, FL, pp 95–120

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, D. Qin, G-K Plattner, M Tignor, SK Allen, J Boschung, A Nauels, Y Xia, V Bex, PM Midgley (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 1535 pp

    Google Scholar 

  • Iriarte J, Power MJ, Rostain S et al (2012) Fire-free land use in pre-1492 Amazonian savannas. Proc Natl Acad Sci U S A 109:6473–6478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jameson W (1858) Excursion made from Quito to the River Napo, January to May, 1857. J Roy Geogr Soc Lond 28:337–349

    Google Scholar 

  • Junqueira AB, Shepard GH, Clement CR (2010) Secondary forests on anthropogenic soils in Brazilian Amazonia conserve agrobiodiversity. Biodivers Conserv 19:1933–1961

    Google Scholar 

  • Junqueira AB, Souza NB, Stomph TJ et al (2016) Soil fertility gradients shape the agrobiodiversity of Amazonian homegardens. Agric Ecosyst Environ 221:270–281

    Google Scholar 

  • Junqueira AB, Levis C, Bongers F et al (2017) Response to comment on “Persistent effects of pre-Columbian plant domestication on Amazonian forest composition”. Science 358:aan8837

    Google Scholar 

  • Keller MA, Alencar A, Asner GP et al (2004) Ecological research in the large-scale biosphere atmosphere experiment in Amazonia (LBA): early results. Ecol Appl 14:S3–S16

    Google Scholar 

  • Kelly TJ, Lawson IT, Roucoux KH et al (2018) Continuous human presence without extensive reductions in forest cover over the past 2500 years in an aseasonal Amazonian rainforest. J Quat Sci 33:369–379

    Google Scholar 

  • Kristiansen T, Svenning JC, Grandez C et al (2009) Commonness of Amazonian palm (Arecaceae) species: cross-scale links and potential determinants. Acta Oecol Int J Ecol 35:554–562

    Google Scholar 

  • Lathrap DW (1970) The upper Amazon. Thames and Hudson, Southampton

    Google Scholar 

  • Lathrap DW, Gebhart-Sayer A, Mester AM (1985) The roots of the Shipibo art style: three waves on Imiríacocha, or there were “Incas” before Incas. J Lat Am Lore 11:31–119

    Google Scholar 

  • Lauterjung MB, Bernardi AP, Montagna T et al (2018) Phylogeography of Brazilian pine (Araucaria angustifolia): integrative evidence for pre-Columbian anthropogenic dispersal. Tree Genet Genomes 14:36

    Google Scholar 

  • Levis C, de Souza PF, Schietti J et al (2012) Historical human footprint on modern tree species composition in the Purus-Madeira interfluve, Central Amazonia. PLoS One 7:e48559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levis C, Costa FRC, Bongers F et al (2017) Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355:925–931

    CAS  PubMed  Google Scholar 

  • Levis C, Flores BM, Moreira PA et al (2018) How people domesticated Amazonian forests. Front Ecol Evol 5:171

    Google Scholar 

  • Liebmann B, Allured D (2005) Daily precipitation grids for South America. Bull Am Meteorol Soc 86:1567–1570

    Google Scholar 

  • Lins J, Lima HP, Baccaro FB et al (2015) Pre-Columbian floristic legacies in modern homegardens of Central Amazonia. PLoS One 10:e0127067

    PubMed  PubMed Central  Google Scholar 

  • Liu KB, Colinvaux PA (1988) A 5200-year history of Amazonian rain forest. J Biogeogr 15:231–248

    Google Scholar 

  • Livi-Bacci M (2016) The depopulation of upper Amazonia in colonial times. Rev Indias 76:419–448

    Google Scholar 

  • Lombardo U (2014) Neotectonics, flooding patterns and landscape evolution in southern Amazonia. Earth Surf Dyn 2:493–511

    Google Scholar 

  • Lombardo U (2016) Alluvial plain dynamics in the southern Amazonian foreland basin. Earth Surf Dyn 7:453–467

    Google Scholar 

  • Lombardo U (2017) River logjams cause frequent large-scale forest die-off events in southwestern Amazonia. Earth Surf Dyn 8:565–575

    Google Scholar 

  • Lombardo U, Prümers H (2010) Pre-Columbian human occupation patterns in the eastern plains of the Llanos de Moxos, Bolivian Amazonia. J Archaeol Sci 37:1875–1885

    Google Scholar 

  • Lombardo U, Canal-Beeby E, Fehr S et al (2011a) Raised fields in the Bolivian Amazonia: a prehistoric green revolution or a flood risk mitigation strategy? J Archaeol Sci 38:502–512

    Google Scholar 

  • Lombardo U, Canal-Beeby E, Veit H (2011b) Eco-archaeological regions in the Bolivian Amazon. Geogr Helv 66:173–182

    Google Scholar 

  • Lombardo U, May JH, Veit H (2012) Mid- to late-Holocene fluvial activity behind pre-Columbian social complexity in the southwestern Amazon basin. The Holocene 22:1035–1045

    Google Scholar 

  • Lombardo U, Denier S, May J-H et al (2013a) Human-environment interactions in pre-Columbian Amazonia: the case of the Llanos de Moxos, Bolivia. Quat Int 312:109–119

    Google Scholar 

  • Lombardo U, Szabo K, Capriles JM et al (2013b) Early and middle Holocene hunter-gatherer occupations in Western Amazonia: the hidden shell middens. PLoS One 8:e72746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardo U, Rodrigues L, Veit H (2018a) Alluvial plain dynamics and human occupation in SW Amazonia during the Holocene: a paleosol-based reconstruction. Quat Sci Rev 180:30–41

    Google Scholar 

  • Lombardo U, McMichael C, Tamanaha EK et al (2018b) Mapping pre-Columbian land use in Amazonia. PAGES Mag 26:14–15

    Google Scholar 

  • Longo M, Knox RG, Levine NM et al (2018) Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. New Phytol 219(3):914–931. https://doi.org/10.1111/nph.15185

    Article  PubMed  Google Scholar 

  • Loughlin NJD, Gosling WD, Mothes P et al (2018) Ecological consequences of post-Columbian depopulation in the Andean-Amazonian corridor. Nat Ecol Evol 2:1233–1236

    PubMed  Google Scholar 

  • Lyons SK, Amatangelo KL, Behrensmeyer AK et al (2016) Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature 529:80–83

    PubMed  Google Scholar 

  • Maezumi SY, Whitney B, Mayle F et al (2017) Reassessing climate and pre-Columbian drivers of paleofire activity in the Bolivian Amazon. Quat Int 3:1–14. https://doi.org/10.1016/j.quaint.2017.11.053

    Article  Google Scholar 

  • Maezumi SY, Alves D, Robinson M et al (2018) The legacy of 4500 years of polyculture agroforesty in the Eastern Amazon. Nat Plants 4(8):540–547. https://doi.org/10.1038/s41477-018-0205-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Marchant R, Almeida L, Behling H et al (2002) Distribution and ecology of parent taxa of pollen lodged within the Latin American Pollen Database. Rev Palaeobot Palynol 121:1–75

    Google Scholar 

  • Maslin M, Malhi Y, Phillips O et al (2005) New views on an old forest: assessing the longevity, resilience and future of the Amazon rainforest. Trans Inst Br Geogr 30:477–499

    Google Scholar 

  • Mayle FE, Iriarte J (2014) Integrated palaeoecology and archaeology – a powerful approach for understanding pre-Columbian Amazonia. J Archaeol Sci 51:54–64

    Google Scholar 

  • Mayle FE, Power MJ (2008) Impact of a drier Early-Mid-Holocene climate upon Amazonian forests. Philos Trans R Soc B 363:1829–1838

    Google Scholar 

  • McKey D, Rostain S, Iriarte J et al (2010) Pre-Columbian agricultural landscapes, and self-organized patchiness in Amazonia. Proc Natl Acad Sci U S A 107:7823–7828

    CAS  PubMed  PubMed Central  Google Scholar 

  • McMichael CH, Piperno DR, Bush MB et al (2012a) Sparse pre-Columbian human habitation in western Amazonia. Science 336:1429–1431

    CAS  PubMed  Google Scholar 

  • McMichael CH, Bush MB, Piperno DR et al (2012b) Spatial and temporal scales of pre-Columbian disturbance associated with western Amazonian lakes. The Holocene 22:131–141

    Google Scholar 

  • McMichael CH, Piperno DR, Bush MB (2015a) Comment on Clement et al. 2015 “The domestication of Amazonia before European conquest”. Proc R Soc B 282:20151837

    CAS  PubMed  Google Scholar 

  • McMichael CH, Piperno DR, Neves EG et al (2015b) Phytolith assemblages along a gradient of ancient human disturbance in western Amazonia. Front Ecol Evol 3:1–15

    Google Scholar 

  • McMichael CH, Matthews-Bird F, Farfan-Rios W et al (2017a) Ancient human disturbances may be skewing our understanding of Amazonian forests. Proc Natl Acad Sci U S A 114:522–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • McMichael CH, Feeley KJ, Dick CW, Piperno DR, Bush MB (2017b) Comment on “Persistent effects of pre-Columbian plant domestication on Amazonian forest composition”. Science 358:eaan8347

    PubMed  Google Scholar 

  • Medina JT (1934) The discovery of the Amazon according to the account of Friar Gaspar de Carvajal and other documents. The American Geographical Society, New York, NY

    Google Scholar 

  • Meggers BJ (1954) Environmental limitation on the development of culture. Am Anthropol 56:801–824

    Google Scholar 

  • Meggers BJ (2001) The mystery of the Marajoara: an ecological solution. Amazoniana 16:421–440

    Google Scholar 

  • Montoya E (2018) Historia de la Amazonía: contribución de la paleoecología al debate de ocupación precolombina y sus efectos en el ecosistema. Ecosistemas 27:18–25

    Google Scholar 

  • Montoya E, Rull V (2011) Gran Sabana fires (SE Venezuela): a paleoecological perspective. Quat Sci Rev 30:3430–3444

    Google Scholar 

  • Montoya E, Rull V, Nogué S (2011) Early human occupation and land use changes near the boundary of the Orinoco and the Amazon basins (SE Venezuela): palynological evidence from El Paují record. Palaeogeogr Palaeoclimatol Palaeoecol 310:413–426

    Google Scholar 

  • Morcote-Ríos G, Bernal R (2001) Remains of palms (Palmae) at archaeological sites in the New World: a review. Bot Rev 67:309–350

    Google Scholar 

  • Morcote-Ríos G, León-Sicard T (2012) Las Terras Pretas del Igarape Takana: un sistema de cultivo precolombino en Leticia Amazonas –Colombia. Universidad Nacional de Colombia, Facultad de Ciencias, Bogotá

    Google Scholar 

  • Morcote-Ríos G, Raz L, Giraldo-Cañas D et al (2013) Terras Pretas de Índio of the Caquetá-Japurá River (Colombian Amazonia). Tipití 11:30–39

    Google Scholar 

  • Moreira PA, Aguirre-Dugua X, Mariac C et al (2017) Diversity of treegourd (Crescentia cujete) suggests introduction and prehistoric dispersal routes into Amazonia. Front Ecol Evol 5:150

    Google Scholar 

  • Muehlebach A (2001) “Making place” at the United Nations: indigenous cultural politics at the UN working group on indigenous populations. Cult Anthropol 16:415–448

    CAS  PubMed  Google Scholar 

  • Neves EG, Petersen JB, Bartone RN et al (2003) Historical and socio-cultural origins of Amazonian dark earths. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian dark earths: origin, properties, management. Springer, Berlin, pp 29–50

    Google Scholar 

  • Neves EG, Petersen JB, Bartone RN et al (2004) The timing of terra preta formation in the central Amazon: archaeological data from three sites. In: Glaser B, Woods WI (eds) Amazonian dark earths: explorations in space and time. Springer, Berlin, pp 125–134

    Google Scholar 

  • Nolan C, Overpeck JT, Allen JRM et al (2018) Past and future global transformation of terrestrial ecosystems under climate change. Science 361:920–923

    CAS  PubMed  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938

    Google Scholar 

  • Palace MW, McMichael CNH, Braswell BH et al (2017) Ancient Amazonian populations left lasting impacts on forest structure. Ecosphere 8:e02035

    Google Scholar 

  • Pärssinen M, Ranzi A, Saunaluoma S et al (2003) Geometrically patterned ancient earthworks in the Rio Branco Region of Acre, Brazil: new evidence of ancient chiefdom formations in Amazonian interfluvial terra firme environment. In: Pärssinin M, Korpisaari A (eds) Western Amazonia – Amazônia Ocidental. Multidisciplinary studies on ancient expansionistic movements, fortifications and sedentary life. Helsinki, Renvall Institute for Area and Cultural Studies, University of Helsinki, pp 97–133

    Google Scholar 

  • Perry L, Dickau R, Zarrillo S et al (2007) Starch fossils and the domestication and dispersal of chili peppers (Capsicum spp. L.) in the Americas. Science 315:986–988

    CAS  PubMed  Google Scholar 

  • Peters CM (2000) Precolumbian silviculture and indigenous management of neotropical forests. In: Lentz DL (ed) Imperfect balance: landscape transformations in the Precolumbian Americas. Columbia University Press, New York, NY, pp 203–223

    Google Scholar 

  • Piperno DR (2011) The origins of plant cultivation and domestication in the New World tropics. Curr Anthropol 52:S453–S470

    Google Scholar 

  • Piperno DR, Holst I, Wessel-Beaver L et al (2002) Evidence for the control of phytolith formation in Cucurbita fruits by the hard rind (Hr) genetic locus: archaeological and ecological implications. Proc Natl Acad Sci U S A 99:10923–10928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piperno DR, McMichael C, Bush MB (2015) Amazonia and the Anthropocene: what was the spatial extent and intensity of human landscape modification in the Amazon basin at the end of prehistory? The Holocene 25:1588–1597

    Google Scholar 

  • Politis GG (1996) Moving to produce: Nukaka mobility and settlement patterns in Amazonia. World Archaeol 27:492–511

    Google Scholar 

  • Posey DA (1985) Indigenous management of tropical forest ecosystems: the case of the Kayapó Indians of the Brazielian Amazon. Agrofor Syst 3:139–158

    Google Scholar 

  • Prestes-Caneiro G, Béarez P, Bailon S et al (2016) Subsistence fishery at Hatahara (750–1230 CE), a pre-Columbian central Amazonian village. J Archaeol Sci Rep 8:454–462

    Google Scholar 

  • Prümers H, Jaimes Betancourt C (2014) 100 años de investigación arqueológica en los Llanos de Mojos. Arqueoantropológicas 4:11–53

    Google Scholar 

  • Quintero-Vallejo E, Klomberg Y, Bongers F et al (2015) Amazonian dark earth shapes the understory plant community in a Bolivian forest. Biotropica 47:152–161

    Google Scholar 

  • Redford KH (1991) The ecologically noble savage. Cult Surviv Q 1:46–48

    Google Scholar 

  • Renard D, Iriarte J, Birks JJ et al (2012) Ecological engineers ahead of their time: the functioning of pre-Columbian raised-field agriculture and its potential contributions to sustainability today. Ecol Eng 45:30–44

    Google Scholar 

  • Riris P (2018) Assessing the impact and legacy of swidden farming in neotropical interfluvial environments through exploratory modelling of post-contact Piaroa land use (Upper Orinoco, Venezuela). The Holocene 28:945–954

    Google Scholar 

  • Roberts P, Boivin N, Lee-Thorp J, Petraglia M, Stock J (2016) Tropical forests and the genus Homo. Evol Anthropol 25:306–317

    PubMed  Google Scholar 

  • Roberts P, Hunt C, Arroyo-Kalin M et al (2017) The deep human prehistory of global tropical forest and its relevance for modern conservation. Nat Plant 3:17093

    Google Scholar 

  • Rodrigues L, Lombardo U, Veit H (2018) Design of pre-Columbian raised fields in the Llanos de Moxos, Bolivian Amazon: differential adaptations to the local environment? J Archaeol Sci Rep 17:366–378

    Google Scholar 

  • Roosevelt AC (1991) Moundbuilders of the Amazon: geophysical archaeology on Marajo Island, Brazil. Academic, San Diego, CA

    Google Scholar 

  • Roosevelt AC (2013) The Amazon and the Anthropocene: 13,000 years of human influence in a tropical rainforest. Anthropocene 4:69–87

    Google Scholar 

  • Roosevelt AC, Lima da Costa M, lopes Machado C et al (1996) Paleoindian cave dwellers in the Amazon: the peopling of the Americas. Science 272:373–384

    CAS  Google Scholar 

  • Roosevelt AC, Douglas J, Brown L (2002) Migrations and adaptations of the first Americans: Clovis and pre-Clovis viewed from South America. In: Jablonski N (ed) The first Americans: the Pleistocene colonization of the New World, vol 27. University of California, Berkeley, pp 159–236

    Google Scholar 

  • Rostain S (1991) Les champs surélevés amérindiens de la Guyane, Coll° La Nature et l’Homme. Centre ORSTOM de Cayenne/Institut Géographique National, Cayenne

    Google Scholar 

  • Rostain S (2008) Agricultural earthworks on the French Guiana Coast. In: Silverman H, Isbell WH (eds) Handbook of South American archaeology. Springer, Berlin, pp 217–233

    Google Scholar 

  • Rostain S (2010) Pre-Columbian earthworks in coastal Amazonia. Diversity 2:331–352

    Google Scholar 

  • Rull V (2014) Time continuum and true long-term ecology: from theory to practice. Front Ecol Evol 2:75

    Google Scholar 

  • Rull V (2018) Strong fuzzy EHLFS: a general conceptual framework to address past records of environmental, ecological and cultural change. Quaternary 1:10

    Google Scholar 

  • Rull V, Montoya E (2014) Mauritia flexuosa palm swamp communities: natural or human-made? A palynological study of the Gran Sabana region (northern South America) within a neotropical context. Quat Sci Rev 99:17–33

    Google Scholar 

  • Rull V, Vegas-Villarrúbia T, Nogué S et al (2008) Bureaucratic obstruction of conservation science in the Guayana highlands. Conserv Biol 22:508–509

    PubMed  Google Scholar 

  • Rull V, Montoya E, Nogué S et al (2013) Ecological palaeoecology in the neotropical Gran Sabana region: long-term records of vegetation dynamics as a basis for ecological hypothesis testing. Perspect Plant Ecol Evol Syst 15:338–359

    Google Scholar 

  • Rull V, Montoya E, Vegas-Vilarrúbia T et al (2015) New insights on paleofires and savannisation in northern South America. Quat Sci Rev 122:158–165

    Google Scholar 

  • Sánchez F, Fernández J, Gassón R et al (2017) Paleoecología y ocupación humana durante el Holoceno en los Llanos del Orinoco: una revisión y nuevos datos. Biollania 15:297–333

    Google Scholar 

  • Sanford RL, Saldarriaga J, Clark KE et al (1985) Amazon rain-forest fires. Science 227:53–55

    PubMed  Google Scholar 

  • Schaan D (2008) The nonagricultural chiefdoms of Marajó Island. In: Silverman H, Isbell WH (eds) Handbook of South American archaeology. Springer, Berlin, pp 339–357

    Google Scholar 

  • Shepard GH Jr, Ramirez H (2011) “Made in Brazil”: human dispersal of the Brazil Nut (Bertholletia excelsa, Lecythidaceae) in ancient Amazonia. Econ Bot 65:44–65

    Google Scholar 

  • Siren A (2014) History of natural resource use and environmental impacts in an interfluvial upland forest area in western Amazonia. Fennia 192:36–53

    Google Scholar 

  • Smith N (2015) Palms and people in the Amazon. Geobotany studies: basics, methods and case studies. Springer, Berlin

    Google Scholar 

  • Stahl PW (2015) Interpreting interfluvial landscape transformations in the pre-Columbian Amazon. The Holocene 25:1598–1603

    Google Scholar 

  • Stenborg P (2009) Points of convergence-routes of divergence: some considerations based on Curt Nimuendajú’s archaeological work in the Satarém-Trombetas Area and Amapá. In: Whitehead NL, Alemán SW (eds) Anthropologies of Guayana: cultural spaces in northeastern Amazonia. University of Arizona Press, Tucson, pp 55–73

    Google Scholar 

  • Stenborg P, Schaan DP, Amaral-Lima M (2012) Precolumbian land use and settlement pattern in the Santarém region, lower Amazon. Amazônica 4:222–250

    Google Scholar 

  • Stenborg P, Schaan DP, Figueiredo CG (2018) Contours of the past: LiDAR data expands the limits of late pre-Columbian human settlement in the Santarém region, lower Amazon. J Field Archaeol 43:1–14

    Google Scholar 

  • ter Steege H, Pitman NCA, Sabatier D et al (2013) Hyperdominance in the Amazonian tree flora. Science 342:1243092

    PubMed  Google Scholar 

  • ter Steege H, Mota de Oliveira S, Pitman NCA, Sabatier D, Antonelli A, Guevara Andino JE, Aymard GA, Salomão RP (2019) Towards a dynamic list of Amazonian tree species. Sci Rep 9(1):3501

    PubMed  PubMed Central  Google Scholar 

  • Thomas E, van Zonneveld M, Loo J et al (2012) Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in Pleistocene refugia followed by human-influenced dispersal. PLoS One 7:e47676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas E, Alcázar Caicedo C, McMichael CH et al (2015) Uncovering spatial patterns in the natural and human history of Brazil nut (Bertholletia excelsa) across the Amazon Basin. J Biogeogr 42:1367–1382

    Google Scholar 

  • Tollefson J (2013) Footprints in the forest. Nature 502:160–162

    CAS  PubMed  Google Scholar 

  • Tomkeieff SI (1962) Unconformity – an historical study. Proc Geol Assoc 73:383–417

    Google Scholar 

  • van der Kaars S, Miller GH, Turney CSM et al (2017) Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia. Nat Commun 8:14142

    PubMed  PubMed Central  Google Scholar 

  • Watling J, Iriarte J, Mayle FE et al (2017) Impact of pre-Columbian “geogliph” builders on Amazonian forests. Proc Natl Acad Sci U S A 114:1868–1873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watling J, Shock MP, Mongeló GZ, Almeida FO, Kater T, De Oliveira PE et al (2018) Direct archaeological evidence for southwestern Amazonia as an early plant domestication and food production centre. PLoS One 13:e0199868

    PubMed  PubMed Central  Google Scholar 

  • Whitehouse NJ, Kirleis W (2014) The world reshaped: practices and impacts of early agrarian societies. J Archaeol Sci 51:1–11

    Google Scholar 

  • Wills C, Harms KE, Condit R et al (2006) Nonrandon processes maintain diversity in tropical forests. Science 311:527–531

    CAS  PubMed  Google Scholar 

  • Woods WI, Glaser B (2004) Towards an understanding of Amazonian dark earths. In: Glaser B, Woods WI (eds) Amazonian dark earths: explorations in space and time. Springer, Berlin, pp 1–8

    Google Scholar 

  • Zizka A, ter Steege H, Do Céo M et al (2018) Finding needles in the haystack: where to look for rare species in the American tropics. Ecography 41:321–330

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Valentí Rull for the invitation to participate in the book. Encarni Montoya was funded by the Spanish Ministry of Economy and Competitivity (Juan de la Cierva Incorporación contract, ref. IJCI-2015-24273) and the Catalan Agency for Universities and Research AGAUR and the EU programme Marie Curie COFUND (Beatriu de Pinos—Marie Curie COFUND fellowship, ref.: 2014 BP-B 00094). Umberto Lombardo was funded by the European Union’s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie actions, EU project 703045). Carolina Levis thanks CNPq for a doctoral and postdoctoral fellowships (CNPq 141652/2014-4 and 159440/2018-1). Special thanks to Hans ter Steege and Ana Carvajal for comments of an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Encarni Montoya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montoya, E., Lombardo, U., Levis, C., Aymard, G.A., Mayle, F.E. (2020). Human Contribution to Amazonian Plant Diversity: Legacy of Pre-Columbian Land Use in Modern Plant Communities. In: Rull, V., Carnaval, A. (eds) Neotropical Diversification: Patterns and Processes. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-31167-4_19

Download citation

Publish with us

Policies and ethics