Skip to main content

Avian Diversity in Humid Tropical and Subtropical South American Forests, with a Discussion About Their Related Climatic and Geological Underpinnings

  • Chapter
  • First Online:
Neotropical Diversification: Patterns and Processes

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

The tropical and subtropical regions of South America occupy ca. 14,250,000 km2, of which 8,000,000 km2 are covered by humid forests. Among these, Amazonia, the Atlantic Forest, the forests of the Eastern Andean Slopes, and the Pacific Forest stand out. About 1014 species of birds (324 non-passerines and 690 passerines) are endemic to these forests. Their lineages are believed to have been impacted by five major geological and climatic events in the Neogene and the Pleistocene: the uplift of the Andes, the formation of the Isthmus of Panama, glaciations, sea-level rise, and alternating period of differing humidity. In this contribution, inspired by an analysis of bird distribution patterns inferred from superimposed species ranges, I discuss possible processes that may have influenced biological diversification in tropical and subtropical South America. Data demonstrate that the Andean uplift divided the original pan-Amazonia into a trans-Andean region (the Pacific forest) and a cis-Andean region (present-day Amazonia), and, about 10–7 Ma, induced the formation of large Amazonian rivers. There is evidence that Amazonia and other tropical forests remained predominantly forested over time, even during the cooler and drier glacial periods. Marine transgressions during the upper Tertiary and lower Quaternary, and the formation of the Amazonian rivers following the rise of the Andes, likely fragmented the forest and operated as mechanisms to generate new species. Moreover, the closing of the Panama Isthmus and connections between Amazonia and the Atlantic forest, and the southern Andean and the Paranaense/Atlantic forests, led to the migration of taxa from other biogeographic regions—substantially increasing diversity in these biomes. Biogeographical patterns can promote insight and lead to the generation of hypotheses about the processes that have shaped present-day patterns of avian biodiversity in the region, but testing the latter will require multidisciplinary studies that integrate geology, paleoecology, molecular phylogenetics, and phylogeography. Moreover, despite the historical processes responsible for the extraordinary richness of the tropical and subtropical avifauna, available data point out to a serious problem affecting bird populations in humid forests of South America—especially in Amazonia, the lower Eastern Andean Slopes, and the Pacific Forest: a severe reduction in the diversity of birds. This drop in diversity is appreciable not only in disturbed habitats, but also in national parks and reserves, suggesting that climate change may be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Ab’Saber AN (1977) Os dominios morfoclimáticos da América do Sul. Geomorfologia 53:1–23

    Google Scholar 

  • Abele LG, Walters K (1979) Marine benthic diversity: a critique and alternative explanation. J Biogeogr 6:115–126

    Google Scholar 

  • Absy ML, Cleef A, Fournier M, Martin M, Servant M, Sifeddine A, Ferreira da Silva M, Soubies F, Suguio K, Turcq B, Van der Hammen T (1991) Mise en évidence de quatre phases d’ouverture de la forêt dense dans le sud-est de l’Amazonie au cours des 60000 dernières années. Première comparaison avec d’autres régions tropicales. CR Acad Sci Paris Sér II 312:673–678

    Google Scholar 

  • Aleixo A (2004) Historical diversification of a terra-firme forest bird superspecies: a phylogeographic perspective on the role of different hypotheses of Amazonian diversification. Evolution 58:1301–1317

    Google Scholar 

  • Aleixo A, Rossetti DF (2007) Avian gene trees, landscape evolution, and geology: towards a modern synthesis of Amazonian historical biogeography? J Ornithol 148(Suppl 2):S443–S453

    Google Scholar 

  • Amadon D (1973) Birds of the Congo and Amazon: a comparison. In: Meggers BJ et al (eds) Tropical forest ecosystems in Africa and South America: a comparative review. Smithsonian Institution Press, Washington, DC, pp 167–267

    Google Scholar 

  • Antonelli A, Sanmartín I (2011) Why are there so many plant species in the Neotropics? Taxon 60:403–414

    Google Scholar 

  • Antonelli A, Nylander JAA, Persson C, Sanmartín I (2009) Tracing the impact of the Andean uplift on Neotropical plant evolution. Proc Natl Acad Sci U S A 106:9749–9754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashworth AC, Kuschel G (2003) Fossil weevils (Coleoptera: Curculionidae) from latitude 85°S Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 191:191–202

    Google Scholar 

  • Ashworth AC, Preece RC (2003) The first freshwater molluscs from Antarctica. J Molluscan Stud 69:89–92

    Google Scholar 

  • Ashworth AC, Thompson FC (2003) A fly in the biogeographic ointment. Nature 423:136–136

    Google Scholar 

  • Auler AS, Smart PL (2001) Late Quaternary paleoclimate in semiarid northeastern Brazil from U-series dating of travertine and water-table speleothems. Quat Res 55:159–167

    CAS  Google Scholar 

  • Auler AS, Wang AX, Edwards RL, Cheng H, Cristalli PS, Smart PL, Richards DA (2004) Quaternary ecological and geomorphic changes associated with rainfall events in presently semi-arid northeastern Brazil. J Quat Sci 19:693–701

    Google Scholar 

  • Ayres JMC, Clutton-Brock TH (1992) River boundaries and species range size in Amazonian primates. Am Nat 140:531–537

    CAS  PubMed  Google Scholar 

  • Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A (2015) Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc Natl Acad Sci U S A 112:6110–6115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker PA, Seltzer GO, Fritz SC, Dunbar RB, Grove MJ, Tapia PM, Cross SL, Rowe HD, Broda JP (2001) The history of South American tropical precipitation for the past 25,000 years. Science 291:640–643

    CAS  PubMed  Google Scholar 

  • Balco G, Rovey CW (2010) Absolute chronology for major Pleistocene advances of the Laurentide Ice Sheet. Geol Soc Am 38:795–798

    CAS  Google Scholar 

  • Barrett PJ, Adams CJ, Mcintosh WC, Swisher CC, Wilson GS (1992) Geochronological evidence supporting Antarctic deglaciation three million years ago. Nature 359:816–818

    Google Scholar 

  • Barron JA (1996) Diatom constraints on the position of the Antarctic polar front in the middle part of the Pliocene. Mar Micropaleontol 27:195–204

    Google Scholar 

  • Batalha-Filho H, Fjeldså J, Fabre PH, Miyaki CY (2013) Connections between the Atlantic and Amazonian forest avifaunas represent distinct historical events. J Ornithol 154:41–50

    Google Scholar 

  • Bates JM (2001) Avian diversification in Amazonia: evidence for historical complexity and a vicariance model for a basic pattern of diversification. In: Viera IMAD, Incao JM, Silva C, Oreneds D (eds) Diversidade Biológica e Cultural da Amazônia. Museu Paraense Emilio Goeldi, Belém, pp 119–138

    Google Scholar 

  • Behling H, Arz HW, Pätzold J, Wefer G (2000) Late Quaternary vegetational and climate dynamics in northeastern Brazil, inferences from marine core GeoB 3104-1. Quat Sci Rev 19:981–994

    Google Scholar 

  • Bonaccorso E, Koch I, Peterson AT (2006) Pleistocene fragmentation of Amazon species’ ranges. Divers Distrib 12:157–164

    Google Scholar 

  • Bonaccorso E, Guayasamin JM, Peterson AT, Navarro-Sigüenza AG (2011) Molecular phylogeny and systematics of Neotropical toucanets in the genus Aulacorhynchus (Aves, Ramphastidae). Zool Scr 40:346–349

    Google Scholar 

  • Brown KS Jr (1975) Geographical patterns of evolution in Neotropical Lepidoptera. Systematics and derivation of known and new Heliconiini (Nymphalidae: Nymphalinae). J Entomol 44:201–242

    Google Scholar 

  • Brumfield RT (2012) Inferring the origins of lowland Neotropical birds. Auk 129:367–376

    Google Scholar 

  • Brumfield RT, Capparella AP (1996) Historical diversification of birds in northwestern South America: a molecular perspective on the role of vicariant events. Evolution 50:1607–1624

    PubMed  Google Scholar 

  • Brumfield RT, Edwards SV (2007) Evolution into and out of the Andes: a Bayesian analysis of historical diversification in Thamnophilus antshrikes. Evolution 61:346–367

    CAS  PubMed  Google Scholar 

  • Bueno ML, Toby Pennington R, Dexter KG, Yoshino Kamino LH, Pontara V, Neves DM, Ratter JA, de Oliveira-Filho AT (2016) Effects of Quaternary climatic fluctuations on the distribution of Neotropical savannah tree species. Ecography 39:1–12

    Google Scholar 

  • Burckle LH, Mortlock R, Rudolph S (1996) No evidence for extreme, long term warming in early Pliocene sediments of the Southern Ocean. Mar Micropaleontol 27:215–226

    Google Scholar 

  • Bush MB (1994) Amazonian speciation: a necessarily complex model. J Biogeogr 21:5–17

    Google Scholar 

  • Bush MB, Colinvaux PA (1990) A long record of climatic and vegetation change in lowland Panama. J Veg Sci 1:105–119

    Google Scholar 

  • Bush MB, de Oliveira PE (2006) The rise and fall of the Refugial Hypothesis of Amazonian Speciation: a paleoecological perspective. Biota Neotrop 6. Online version

    Google Scholar 

  • Bush MB, Metcalfe SE (2012) Latin America and the Caribbean. In: Metcalfe SE, Nash DJ (eds) Quaternary environmental change in the tropics. John Wiley and Sons, New York, pp 263–311

    Google Scholar 

  • Bush MB, Silman MR, Urrego DH (2004) 48,000 years of climate and forest change from a biodiversity hotspot. Science 303:827–829

    CAS  PubMed  Google Scholar 

  • Bush MB, Gosling WD, Colinvaux PA (2011) Climate and vegetation change in the lowlands of the Amazon Basin. In: Bush MB, Flenley JR, Gosling WD (eds) Tropical rainforest responses to climatic change. Springer, Berlin, pp 61–84

    Google Scholar 

  • Cabanne GS, d’Horta FM, Sari EHR, Miyaki CM (2008) Nuclear and mitochondrial phylogeography of the Atlantic Forest endemic Xiphorhynchus fuscus (Aves Dendrocolaptidae): biogeography and systematics implications. Mol Phylogenet Evol 49:760–773

    CAS  PubMed  Google Scholar 

  • Cabrera AL, Willink A (1973) Biogeografía de América Latina. Monografía 13, Serie de Biología. OEA, Washington, DC

    Google Scholar 

  • Capparella A (1991) Neotropical avian diversity and riverine barriers. In: Bell BD (ed) Acta XX Congressus Internationalis Ornithologici. New Zealand Ornithological Congress Trust Board, Wellington, pp 307–316

    Google Scholar 

  • Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C (2009) Stability ptredicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323:785–789

    CAS  PubMed  Google Scholar 

  • Chapman FM (1917) The distribution of bird-life in Colombia. Bull Am Mus Nat Hist 36:1–729

    Google Scholar 

  • Chapman FM (1926) The distribution of bird-life in Ecuador. Bull Am Mus Nat Hist 55:1–784

    Google Scholar 

  • Cheng H, Sinha A, Cruz FW, Wang X, Edwards RL, d’Horta FM, Ribas CC, Vuille M, Stott LD, Auler AS (2013) Climate change patterns in Amazonia and biodiversity. Nat Comms 4:1411. https://doi.org/10.1038/ncomms2415

    Article  CAS  Google Scholar 

  • Choueri EL, Gubili C, Borges SH, Thom G, Sawakuchi AO, Soares EAA, Ribas CC (2017) Phylogeography and population dynamics of Antbirds (Thamnophilidae) from Amazonian fluvial islands. J Biogeogr 44(10):2284–2294. https://doi.org/10.1111/jbi.13042

    Article  Google Scholar 

  • Clapperton CM (1993) Nature of environmental changes in South America at the last glacial maximum. Palaeogeogr Palaeoclimatol Palaeoecol 101:189–208

    Google Scholar 

  • Claramunt S, Derryberry EP, Remsen JV Jr, Brumfield RT (2011) High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proc R Soc B 279:1567–1574

    PubMed  PubMed Central  Google Scholar 

  • CLIMAP (1976) The surface of the ice-age Earth. Science 191:1131–1136

    Google Scholar 

  • Coates AG, Obando JA (1996) The geologic evolution of the Central American Isthmus. In: Jackson JBC, Budd AF, Coates AG (eds) Evolution and environment in tropical America. University of Chicago Press, Chicago, pp 21–56

    Google Scholar 

  • Coates AG, Jackson JBC, Collins LS, Cronin TM, Dowset HJ, Bybell LM, Jung P, Obando J (1992) Closure of the Isthmus of Panama: the near-shores marine records of Costa Rica and western Panama. Geol Soc Am Bull 104:814–828

    Google Scholar 

  • Coates AG, Stallard RF, Robert F (2013) How old is the Isthmus of Panama? Bull Mar Sci 89:801–813

    Google Scholar 

  • Cody S, Richardson JE, Rull V, Ellis C, Toby Pennington R (2010) The Great American Biotic Interchange revisited. Ecography 33:326–332

    Google Scholar 

  • Colinvaux PA (1987) Amazon diversity in light of the paleoecological record. Quat Sci Rev 6:93–114

    Google Scholar 

  • Colinvaux PA (1989) The past and future Amazon. Sci Am 260:102–108

    Google Scholar 

  • Colinvaux PA (1993) Pleistocene biogeography and diversity in tropical forests of South America. In: Goldblatt P (ed) Biological relationships between Africa and South America. Yale University Press, New Haven, CT, pp 473–499

    Google Scholar 

  • Colinvaux PA (1997) An arid Amazon? Trends Ecol Evol 12:318–319

    CAS  PubMed  Google Scholar 

  • Colinvaux PA, De Oliveira PE, Moreno JE, Miller MC, Bush MB (1996) A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 274:85–88

    CAS  Google Scholar 

  • Colinvaux PA, de Oliveira PE, Bush MB (2000) Amazonian and Neotropical plant communities on glacial time-scales: the failure of the aridity and refuge hypotheses. Quat Sci Rev 19:141–169

    Google Scholar 

  • Colinvaux PA, Irion G, Räsänen ME, Bush MB, Nunes de Melo JAS (2001) A paradigm to be dicarded: geological and palaeoecological data falsify the Haffer and Prance refuge hypothesis of Amazonian speciation. Amazoniana 16:609–646

    Google Scholar 

  • Collins LS (1996) Environmental changes in Caribbean shallow waters relative to the closing tropical American seaway. In: Jackson JBC, Budd AF, Coates AG (eds) Evolution and environment in tropical America. University of Chicago Press, Chicago, pp 130–167

    Google Scholar 

  • Collins LS (1999) The Miocene to recent diversity of Caribbean benthic foraminifera from the Central American Isthmus. Bull Am Paleontol 357:91–107

    Google Scholar 

  • Collins LS, Coates AG, Berggren WA, Aubri MP, Zhang J (1996) The late Miocene Panama isthmian strait. Geology 24:687–690

    Google Scholar 

  • Costa LP (2003) The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. J Biogeogr 30:71–86

    Google Scholar 

  • Cowling SA, Maslin MA, Sykes MT (2001) Paleovegetation simulations of lowland Amazonia and implications for Neotropical allopatry and speciation. Quat Res 55:140–149

    CAS  Google Scholar 

  • Cracraft J (1985) Historical biogeography and patterns of differentiation within the South American avifauna: areas of endemism. Ornithol Monogr 36:49–84

    Google Scholar 

  • Cracraft J, Prum RO (1988) Patterns and processes of diversification: speciation and historical congruence in some Neotropical birds. Evolution 42:603–620

    PubMed  Google Scholar 

  • D’Apolito C, Absy ML, Latrubesse EM (2013) The Hill of Six Lakes revisited: new data and re-evaluation of a key Pleistocene Amazon site. Quat Sci Rev 76:140–155

    Google Scholar 

  • d’Horta FM, Cuervo AM, Ribas CC, Brumfield RT, Miyaki CY (2013) Phylogeny and comparative phylogeography of Sclerurus(Aves: Furnariidae) reveal constant and cryptic diversification in an old radiation of rain forest understorey specialists. J Biogeogr 40:37–49

    Google Scholar 

  • Darlington PJ (1957) Zoogeography. The geographical distribution of animal. Wiley, New York

    Google Scholar 

  • Darrieu CA (1986) Estudios sobre la avifauna de Corrientes. III. Nuevos registros de aves Passeriformes (Dendrocolaptidae, Furnariidae, Formicariidae, Cotingidae y Pipridae) y consideraciones sobre su distribución geográfica. Hist Nat 6:93–99

    Google Scholar 

  • Davis LI (1972) A field guide to the Mexico and Central America. Texas University Press, Austin

    Google Scholar 

  • De Oliveira PE, Barreto AMF, Suguio K (1999) Late Pleistocene/Holocene climatic and vegetational history of the Brazilian caatinga: the fossil dunes of the middle São Francisco River. Palaeogeogr Palaeoclimatol Palaeoecol 152:319–337

    Google Scholar 

  • de Vivo M (1997) Mammalian evidence of historical ecological change in the Caatinga semiarid vegetation of northeastern Brazil. J Comp Biol 2:65–73

    Google Scholar 

  • del Hoyo J, Elliott A, Sargatal J, Christie D (1992–2013) Handbook of the birds of the world. Lynx Edicions, Barcelona

    Google Scholar 

  • Denton GH, Prentice ML, Burckle LH (1991) Cenozoic history of the Antarctic ice sheet. In: Tingey RJ (ed) Geology of Antarctica. Oxford University Press, Oxford, pp 365–433

    Google Scholar 

  • Derryberry EP, Claramunt S, Derryberry G, Chesser RT, Cracraft J, Aleixo A, Peérez-Emán J, Remsen JV Jr, Brumfield RT (2011) Lineage diversification and morphological evolution in a large-scale continental radiation: the Neotropical ovenbirds and woodcreepers (Aves: Furnariidae). Evolution 65:2973–2986

    PubMed  Google Scholar 

  • Dowsett HJ, Cronin TM, Poore RZ, Thompson RS, Whatley RC, Wood AM (1992) Micropaleontological evidence for increased meridional heat transport in the North Atlantic Ocean during the Pliocene. Science 258:1133–1135

    CAS  PubMed  Google Scholar 

  • Dowsett H, Barron J, Poore R (1996) Middle Pliocene sea surface temperatures: a global reconstruction. Mar Micropaleontol 27:13–25

    Google Scholar 

  • Drewry DJ, Jordan SR, Jankowski E (1982) Measured properties of the Antarctic ice sheet: surface configurations, ice thickness, volume and bedrock characteristics. Ann Glaciol 3:83–91

    Google Scholar 

  • Dutton A, Carlson AE, Long AJ, Milne GA, Clark PU, DeConto R (2015) Sea level rise due to polar ice-sheet mass loss during past warm periods. Science 349:4019

    Google Scholar 

  • Dwyer GS, Chandler MA (2009) Mid-Pliocene sea level and continental ice volume based on coupled benthic Mg/Ca palaeotemperatures and oxygen isotopes. Phil Trans R Soc A 367:157–168

    CAS  PubMed  Google Scholar 

  • Ericson DB, Wolling G (1968) Pleistocene climates and chronology in deep-sea sediments. Science 162:1227–1234

    CAS  PubMed  Google Scholar 

  • Ericson DB, Ewing M, Wolling G (1964) The Pleistocene epoch in deep-sea sediments. Science 146:723–732

    CAS  PubMed  Google Scholar 

  • Erkens RHJ, Hoorn C (2016) The Panama Isthmus, ‘old’, ‘young’ or both? A reply to O’Dea et al. 2016. Sci Adv. Online e-letter

    Google Scholar 

  • Fairbridge RW (1961) Eustatic changes in sea-level. In: Ahrens LH et al (eds) Physics and chemistry of the earth. Pergamon Press, London, pp 99–185

    Google Scholar 

  • Fernandes AM, Wink M, Aleixo A (2012) Phylogeography of the Chestnut-tailed Antbird (Myrmeciza hemimelaena) clarifies the role of rivers in Amazonian biogeography. J Biogeogr 39:1524–1535

    Google Scholar 

  • Fernandes AM, Wink M, Sardelli CH, Aleixo A (2014) Multiple speciation across the Andes and throughout Amazonia: the case of the spot-backed antbird species complex (Hylophylax naevius/Hylophylax naevioides). J Biogeogr 6:1094–1104

    Google Scholar 

  • Ferreira M, Aleixo A, Ribas CC, Santos MPD (2017) Biogeography of the Neotropical genus Malacoptila (Aves: Bucconidae): the influence of the Andean orogeny, Amazonian drainage evolution and palaeoclimate. J Biogeogr 44:748–759

    Google Scholar 

  • Figueiredo J, Hoorn C, van der Ven P (2009) Late Miocene onset of the Amazon River and the Amazon deep-sea fan: evidence from the Foz do Amazonas Basin. Geology 37:619–622

    Google Scholar 

  • Figueiredo J, Hoorn C, van der Ven P, Soares E (2010) Late Miocene onset of the Amazon River and the Amazon deep-sea fan: evidence from the Foz do Amazonas Basin: reply. Geology e213:38

    Google Scholar 

  • Finschii P, Pirani JR (2009) Review of plant biogeographic studies in Brazil. J Syst Evol 47:477–496

    Google Scholar 

  • Fisher AG (1960) Latitudinal variation in organic diversity. Evolution 14:64–81

    Google Scholar 

  • Fittkau EJ (1974) Zur ökologischen Gliederung Amazoniens. I: die erdgeschichtliche Entwicklung Amazoniens. Amazoniana 5:77–134

    Google Scholar 

  • Flint RF (1957) Glacial and Pleistocene geology. Wiley, New York

    Google Scholar 

  • Frailey CD (2002) Paleogeography of the Amazon basin. TER-QUA Symp Ser 3:71–97

    Google Scholar 

  • Garzione CN, Hoke GD, Libarkin JC, Withers S, MacFadden B, Eiler J, Ghosh P, Mulch A (2008) Rise of the Andes. Science 5881:1304–1307

    Google Scholar 

  • Gascon C, Lougheed SC, Bogart JP (1996) Genetic and morphological variation in Vanzolinius discodactylus: a test of the river hypothesis of speciation. Biotropica 28:376–387

    Google Scholar 

  • Gascon C, Lougheed SC, Bogart JP (1998) Patterns of genetic population differentiation in four species of Amazonian frogs: a test of the Riverine Barrier Hypothesis. Biotropica 30:104–119

    Google Scholar 

  • Gascon C, Malcon JR, da Silva MNF, Bogart JP, Lougheed SC, Peres CA, Neckel S, Boag PT (2000) Riverine barriers and the geographic distribution of Amazonian species. Proc Natl Acad Sci U S A 97:13672–13677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gates WL (1976) Modeling the ice-age climate. Science 191:1138–1144

    CAS  PubMed  Google Scholar 

  • Gibbard P, van Kolfschoten T (2005) The Pleistocene and Holocene epochs. In: Gradstein FM, Ogg JG, Smithand A, Gilbert A (eds) Geologic time scale. Cambridge University Press, Cambridge, pp 441–452

    Google Scholar 

  • Grau ET, Pereira SL, Silveira LF, Höfling E, Wajntal A (2005) Molecular phylogenetics and biogeography of Neotropical piping guans (Aves: Galliformes): Pipile Bonaparte, 1856 is synonym of Aburria Reichenbach, 1853. Mol Phylogenet Evol 35:637–645

    CAS  PubMed  Google Scholar 

  • Gregory-Wodzicki KM (2000) Uplift history of the central and northern Andes: a review. Geol Soc Am Bull 112:1091–1105

    Google Scholar 

  • Haberle S (1997) Upper Quaternary vegetation and climate history of the Amazon basin: correlating marine and terrestrial pollen records. In: Flood RD, Piper DJW, Klaus A, Peterson LC (eds) Proceedings of the ocean program, scientific results. Ocean Drilling Program, College Station, TX, pp 381–396

    Google Scholar 

  • Haffer J (1967) Speciation in Colombian forest birds west of the Andes. Am Mus Novit 2294:1–57

    Google Scholar 

  • Haffer J (1969) Speciation in Amazonian forest birds. Science 165:131–137

    CAS  PubMed  Google Scholar 

  • Haffer J (1974) Avian speciation in tropical South America, No. 14. Publications of the Nuttall Ornithological Club, Cambridge, MA

    Google Scholar 

  • Haffer J (1978) Distribution of Amazon forest birds. Bonner Zool Beirträge 29:38–78

    Google Scholar 

  • Haffer J (1985) Avian zoogeography in the Neotropical lowlands. In: Buckley PA, Foster MS, Morton ES, Ridgely RS, Buckley FG (eds) Neotropical ornithology. AOU, Washington, DC, pp 113–146. (Orn Monogr 36)

    Google Scholar 

  • Haffer J (1997) Alternative models of vertebrate speciation in Amazonia: an overview. Biodivers Conserv 6:451–476

    Google Scholar 

  • Haffer J (2001) Hypotheses to explain the origin of species in Amazonia. In: Vieira ICG, Silva JMC, Oren DC, D’Incao MA (eds) Diversidade biológica e cultural de Amazonia. Museu Paraense Emílio Goeldi, Belém, pp 45–118

    Google Scholar 

  • Haffer J, Prance GT (2001) Climatic forcing of evolution in Amazonia during the Cenozoic: on the refuge theory of biotic differentiation. Amazoniana 16:579–607

    Google Scholar 

  • Hall JPW, Harvey DJ (2002) The phylogeography of Amazonia revisited: new evidence from Riodinid butterflies. Evolution 56:1489–1497

    PubMed  Google Scholar 

  • Hallam A (1971) Re-evaluation of the palaeogeographic argument for an expanding earth. Nature 232:180–182

    CAS  PubMed  Google Scholar 

  • Hannah L (2015) Past marine ecosystem changes. In: Hannah L (ed) Climate change biology. Academic Press, Cambridge, MA, pp 163–177

    Google Scholar 

  • Haq BU, Hardenboland J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167

    CAS  PubMed  Google Scholar 

  • Harrington HJ (1962) Paleogeographic development of South America. Bull Am Assoc Pet Geol 46:1773–1814

    Google Scholar 

  • Harrison R (1991) Molecular changes at speciation. Annu Rev Ecol Syst 22:281–308

    Google Scholar 

  • Hartley AJ (2003) Andean uplift and climate change. J Geol Soc Lond 160:7–10

    Google Scholar 

  • Harvey MG, Brumfield RT (2015) Genomic variation in a widespread neotropical bird (Xenops minutus) reveals divergence, population expansion, and gene flow. Mol Phylogenet Evol 83:305–316

    PubMed  Google Scholar 

  • Hayes F, Sewlal J-AN (2004) The Amazon River as a dispersal barrier to passerine birds: effects of river width, habitat and taxonomy. J Biogeogr 31:1809–1818

    Google Scholar 

  • Hays JD, Pitman WC (1973) Lithospheric plate motion, sea level changes and climatic and ecological consequences. Nature 246:18–22

    Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    CAS  PubMed  Google Scholar 

  • Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:193–211

    Google Scholar 

  • Hilty SL (2003) Birds of Venezuela. Princeton University Press, Princeton

    Google Scholar 

  • Hilty SL, Brown WL (1986) A guide to the birds of Colombia. Princeton University Press, Princeton

    Google Scholar 

  • Hooghiemstra H (1997) Tropical rain forest versus savannah: two sides of a precious medal? NWO/Huygenslezingen, The Hague

    Google Scholar 

  • Hoorn C (1993) Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: results of a palynostratigraphic study. Palaeogeogr Palaeoclimatol Palaeoecol 105:267–309

    Google Scholar 

  • Hoorn C (1997) Palynology of the Pleistocene glacial/interglacial cycles of the Amazon fan (holes 940A, 944A, and 946A). In: Flood RD, Piper DJW, Klaus A, Peterson LC (eds) Proceedings of the ocean drilling program, scientific results, vol 155. Ocean Drilling Program, College Station, TX, pp 397–409

    Google Scholar 

  • Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Jaramillo JPFC, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931

    CAS  PubMed  Google Scholar 

  • Hueck H, Seibert P (1972) Vegetationskarte von Südamerika: Erläuterung zur Karte 1:8.000.000. Gustav Fischer, Stuttgart

    Google Scholar 

  • Idnurm M, Cook PJ (1980) Palaeomagnetism of beach ridges in South Australia and the Milankovitch theory of ice ages. Nature 286:699–702

    Google Scholar 

  • Ingólfsson Ó (2004) Quaternary glacial and climate history of Antarctica. Dev Quat Sci 2:3–43

    Google Scholar 

  • Johnson KP, Weckstein JD (2011) The Central American land bridge as an engine of diversification in new world doves. J Biogeogr 38:1069–1076

    Google Scholar 

  • Johnson MA, Saraiva PM, Coelho D (1999) The role of gallery forests in the distribution of Cerrado mammals. Rev Bras Biol 59:421–427

    Google Scholar 

  • Kaufman DS, Brigham-Grette J (1993) Aminostratigraphic correlations and paleotemperature implications, Pliocene–Pleistocene high-sea-level deposits, northwestern Alaska. Quat Sci Rev 12:21–33

    Google Scholar 

  • Keigwin LD (1982) Isotopic paleoceanography of the Caribbean and east Pacific: role of Panama uplift in late Neogene time. Science 217:350–353

    CAS  PubMed  Google Scholar 

  • Kennett JP, Shackleton NJ (1976) Oxygen isotopic evidence for the development of the psychrosphere 38 Myr ago. Nature 260:513–515

    CAS  Google Scholar 

  • Kerr RA (1996) Ancient sea-level swings confirmed. Science 272:1097–1098

    CAS  Google Scholar 

  • Klammer G (1971) Über plio-pleistozäne Terrassen und ihre Sedimente im unteren Amazonasgebiet. Z Geomorphol 15:62–106

    Google Scholar 

  • Knapp S, Mallet J (2003) Refuting refugia? Science 300:71–72

    CAS  PubMed  Google Scholar 

  • Lambeck K, Esat TM, Potter EK (2002) Links between climate and sea levels for the past three million years. Nature 419:199–206

    CAS  PubMed  Google Scholar 

  • Latrubesse EM (2002) Evidence of quaternary paleohydrological changes in middle Amazonia: the Aripuana-Roosevelt and Jiparaná fans. Z Geomorphol Suppl 129:61–72

    Google Scholar 

  • Latrubesse EM, Cozzuol M, da Silva-Caminha SAF, Rigsby CA, Absy ML, Jaramillo C (2010) The late Miocene paleogeography of the Amazon basin and the evolution of the Amazon river system. Earth Sci Rev 99:99–124

    CAS  Google Scholar 

  • Leigh EG, O’Dea A, Vermeij GJ (2013) Historical biogeography of the Isthmus of Panama. Biol Rev Camb Philos Soc 89:148–172

    PubMed  Google Scholar 

  • Liu K, Colinvaux PA (1985) Forest changes in the Amazon Basin during the last glacial maximum. Nature 318:556–557

    Google Scholar 

  • Lovejoy NR, Bermingham E, Martin AP (1998) Marine incursion into South America. Nature 396:421–422

    CAS  Google Scholar 

  • Lovejoy NR, Albert JS, Crampton WGR (2006) Miocene marine incursions and marine/freshwater transitions: evidence from Neotropical fishes. J S Am Earth Sci 21:5–13

    Google Scholar 

  • Maldonado-Coelho M, Blake JG, Silveira LF, Batalha-Filho H, Ricklefs RE (2013) Rivers, refuges and population divergence of fire-eye antbirds (Pyriglena) in the Amazon Basin. J Evol Biol 26:1090–1107

    CAS  PubMed  Google Scholar 

  • Malfait BT, Dinkelman MG (1972) Circum-Caribbean tectonic and igneous activity and the evolution of the Caribbean plate. Geol Soc Am Bull 83:251–271

    Google Scholar 

  • Marchant DR, Denton GH (1996) Miocene and Pliocene paleoclimate of the Dry Valleys region, southern Victoria land: a geomorphological approach. Mar Micropaleontol 27:253–271

    Google Scholar 

  • Markgraf V (1985) Paleoenvironmental history of the last 10,000 years in northwestern Argentina. In: Garleff K, Stingl H (eds) Sudamerika Geomorphologie und Paläoökologie de Jüngeren Quartars. Zentralblatt fur Geologie und Paläontologie, Stuttgart, pp 1739–1749

    Google Scholar 

  • Marks BD, Hackett S, Capparella A (2002) Historical relationships among neotropical lowland forest areas of endemism as determined by mitochondrial DNA sequence variation within the Wedge-billed Woodcreeper (Aves: Dendrocolaptidae: Glyphorhynchus spirurus). Mol Phylogenet Evol 24:153–167

    CAS  PubMed  Google Scholar 

  • Marshall LG (1988) Land mammals and the Great American Interchange. Am Sci 76:380–388

    Google Scholar 

  • Marshall LG, Webb SD, Sepkowski JJ, Raup DM (1982) Mammalian evolution and the Great American Interchange. Science 215:1351–1357

    CAS  PubMed  Google Scholar 

  • Matos MV, d’Horta F, Borges SH, Latrubesse E, Cohn-Haft CCM, Ribas CC (2016) Comparative phylogeography of two bird species, Tachyphonus phoenicius (Thraupidae) and Polytmus theresiae (Trochilidae), specialized in Amazonian white-sand vegetation. Biotropica 48:110–121

    Google Scholar 

  • Mayle FE, Burbridge R, Killeen TJ (2000) Millennial-scale dynamics of southern Amazonian rain forests. Science 290:2291–2294

    CAS  PubMed  Google Scholar 

  • Mayle FE, Beerling DJ, Gosling WD, Bush MB (2004) Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum. Philos Trans R Soc Lond B 359:499–514

    CAS  Google Scholar 

  • Mégard F (1992) The evolution of the Pacific Ocean margin in South America north of Arica elbow (18° S). In: Ben-Avraham Z (ed) Evolution of the Pacific Ocean margins. Oxford University Press, New York, pp 208–230

    Google Scholar 

  • Montes C, Bayona J, Cardona A, Buchs D, Silva CA, Morén S (2012) Arc-continent collision and orocline formation: closing of the Central American Seaway. J Geophys Res Atmos 117:4105–4129

    Google Scholar 

  • Mora A, Baby P, Roddaz M, Parra M, Brusset S, Hermoza W, Espurt N (2010) Tectonic history of the Andes and sub-Andean zones: implications for the development of the Amazon drainage basin. In: Hoorn C, Wesselingh FP (eds) Amazonia, landscape and species evolution: a look into the past. Wiley, Oxford, pp 38–60

    Google Scholar 

  • Moritz C, Patton JL, Schneider CJ, Smith TB (2000) Diversification of rainforest faunas: an integrated molecular approach. Annu Rev Ecol Syst 31:533–563

    Google Scholar 

  • Müller P (1973) The dispersal centers of terrestrial vertebrates in the Neotropical realm. Biogeographica 2:1–250

    Google Scholar 

  • Naish T (1997) Constraints of the amplitude of late Pliocene eustatic sea-level fluctuations: new evidence from the New Zealand shallow-marine sediment record. Geology 25:1139–1142

    Google Scholar 

  • Naka LN, Bechtoldt CL, Pinto Henriques LM, Brumfield RT (2012) The role of physical barriers in the location of avian suture zones in the Guiana Shield, northern Amazonia. Am Nat 179:115–132

    Google Scholar 

  • Nores M (1992) Bird speciation in subtropical South America in relation to forest expansion and retraction. Auk 109:346–357

    Google Scholar 

  • Nores M (1999) An alternative hypothesis for the origin of Amazonian bird diversity. J Biogeogr 24:475–485

    Google Scholar 

  • Nores M (2000) Species richness in the Amazonian bird fauna from an evolutionary perspective. EMU 100:419–430

    Google Scholar 

  • Nores M (2004) The implications of Tertiary and Quaternary sea level rise events for avian distribution patterns in the lowlands of northern South America. Glob Ecol Biogeogr 13:149–162

    Google Scholar 

  • Nores M (2009) Are bird populations in tropical and subtropical forests of South America affected by climate change? Clim Chang 97:543–551

    Google Scholar 

  • Nores M (2011) The western Amazonian boundary for avifauna determined by species distribution patterns and geographical and ecological features. Int J Ecol 2011:1–7

    Google Scholar 

  • Nores M (2013) Diversity, origin and status of Amazonian avifauna. In: Rodriguez Alcântara C (ed) Amazon: biodiversity conservation, economic development and human impact. Nova Science, New York, pp 115–154

    Google Scholar 

  • Nores M, Cerana MM, Serra DA (2005) Dispersal of forest birds and trees along the Uruguay River in southern South America. Divers Distrib 11:205–217

    Google Scholar 

  • O’Dea A et al (2016) Formation of the Isthmus of Panama. Sci Adv 2(8):e1600883. https://doi.org/10.1126/sciadv.1600883

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira-Filho AT, Ratter JA (1995) A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinb J Bot 52:141–194

    Google Scholar 

  • Patel S, Weckstein JD, Patane JSL, Bates JM, Aleixo A (2011) Temporal and spatial diversification of Pteroglossus aracaris (Aves Ramphastidae) in the Neotropics: constant rate of diversification does not support an increase in radiation during the Pleistocene. Mol Phylogenet Evol 58:105–115

    PubMed  Google Scholar 

  • Patton JL, Silva MNF, Malcolm JR (1994) Gene genealogy and differentiation among arboreal spiny rats (Rodentia: Echmyidae) of the Amazon: a test of the riverine barrier hypothesis. Evolution 48:1314–1323

    PubMed  Google Scholar 

  • Patton JL, Silva MNF, Malcolm JR (1996) Hierarchical genetic structure and gene flow in three sympatric species of Amazonian rodents. Mol Ecol 5:229–238

    CAS  PubMed  Google Scholar 

  • Patton JL, Silva MNF, Malcolm JR (2000) Mammals of the Rio Juruá and the evolutionary and ecological diversification of Amazonia. Bull Am Mus Nat Hist 244:1–306

    Google Scholar 

  • Pennington TR, Prado DE, Pendry CA (2000) Neotropical seasonally dry forest and Quaternary vegetation changes. J Biogeogr 27:261–273

    Google Scholar 

  • Peterson AT (2006) Application of molecular clocks in ornithology revisited. J Avian Biol 37:541–544

    Google Scholar 

  • Peterson AT (2009) Phylogeography is not enough: the need for multiple lines of evidence. Front Biogeogr 1:19–25

    Google Scholar 

  • Peterson AT, Li X, Navarro-Sigüenza AG (2010) Joint effects of marine intrusion and climate change on the Mexican avifauna. Ann Assoc Am Geogr 100:908–916

    Google Scholar 

  • Pielou EC (1979) Biogeography. Wiley, New York

    Google Scholar 

  • Pinto OMO (1940) Aves de Pernambuco. Arq Zool 1:219–282

    Google Scholar 

  • Pinto OMO (1978) Novo catálogo das aves do Brasil. Revista dos Tribunais, São Paulo, p 1

    Google Scholar 

  • Piperno DR (1997) Phytoliths and microscopic charcoal from leg 155: a vegetational and fire history of the Amazon basin during the last 75 K.Y. In: Flood RD, Piper DJW, Klaus A, Peterson LC (eds) Proceedings of the ocean program, scientific results, vol 155. Ocean Drilling Program, College Station, TX, pp 411–418

    Google Scholar 

  • Pomara LY, Ruokolainen K, Young KR (2014) Avian species composition across the Amazon River: the roles of dispersal limitation and environmental heterogeneity. J Biogeogr 41:784–796

    Google Scholar 

  • Por FD (1992) Sooretama the Atlantic Rain Forest of Brazil. SPB Academic Publishing, The Hague

    Google Scholar 

  • Potter PE, Szatmari P (2009) Global Miocene tectonics and the modern world. Earth Sci Rev 96:279–295

    Google Scholar 

  • Prance GT (1973) Phytogeographic support for the theory of Pleistocene forest refuges in the Amazon basin, based on evidence from distribution patterns in Caryocaraceae, Chrysobalanaceae, Dichapetalaceae and Lecythidaceae. Acta Amazon 3:5–28

    Google Scholar 

  • Ramos VA (2009) Anatomy and global context of the Andes: main geologic features and the Andean orogenic cycle. Geol Soc Am Mem 204:31–65

    Google Scholar 

  • Räsänen ME, Linna AM, Santos JCR, Negri FR (1995) Late Miocene tidal deposits in the Amazonian foreland basin. Science 269:386–390

    PubMed  Google Scholar 

  • Raymo ME, Mitrovika JX, O’Leari MJ, DeConto RM, Earty PJ (2011) Departures from eustasy in Pliocene sea-level records. Nat Geosci 4:328–332

    CAS  Google Scholar 

  • Raymo ME, Kozdon R, Evans D, Lisiecki L, Ford HL (2018) The accuracy of mid-Pliocene δ18O-based ice volume and sea level reconstructions. Earth-Sci Rev 177:291–302

    CAS  Google Scholar 

  • Redford KE, da Fonseca GAB (1986) The role of gallery forests in the zoogeography of the Cerrado’s non-volant mammalian fauna. Biotropica 18:126–135

    Google Scholar 

  • Remsen JV Jr et al (2018) A classification of the bird species of South America. American Ornithologists’ Union, Baton Rouge. www.museum.lsu.edu/~Remsen/SACCBaseline.htm

    Google Scholar 

  • Ribas CC, Gaban-Lima R, Miyaki CY, Cracraft J (2005) Historical biogeography and diversification within the Neotropical parrot genus Pionopsitta (Aves: Psittacidae). J Biogeogr 32:1409–1427

    Google Scholar 

  • Ribas CC, Aleixo A, Nogueira ACR, Miyaki CY, Cracraft J (2012) A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proc R Soc B 799:681–689

    Google Scholar 

  • Ribas CC, Aleixo A, Gubili C, d’Horta FM, Brumfield RT, Cracraft J (2018) Biogeography and diversification of Rhegmatorhina (Aves: Thamnophilidae): implications for the evolution of Amazonian landscapes during the Quaternary. J Biogeogr 45:917–928

    Google Scholar 

  • Richards PW (1952) The tropical rain forest. Cambridge University Press, Cambridge

    Google Scholar 

  • Ridgely RS (1976) Birds of Panama. Princeton University Press, Princeton

    Google Scholar 

  • Ridgely RS, Greenfield PJ (2001) The birds of Ecuador. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Ridgely RS, Tudor G (1989) The birds of South America, vol 1. Oxford University Press, Oxford

    Google Scholar 

  • Ridgely RS, Tudor G (1994) The birds of South America, vol 2. Oxford University Press, Oxford

    Google Scholar 

  • Rodríguez-Mata JR, Erize F, Rumboll M (2006) A field guide to the birds of South America. Non-passerines. Harper Collins, London

    Google Scholar 

  • Rohling EJ, Grant K, Bolshaw M, Roberts AP, Siddall M, Hemleben C, Kucera M (2009) Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nat Geosci 2:500–504

    CAS  Google Scholar 

  • Rull V (2006) Quaternary speciation in the Neotropics. Mol Ecol 15:4257–4259

    CAS  PubMed  Google Scholar 

  • Rull V (2011) Neotropical biodiversity: timing and potential drivers. Trends Ecol Evol 26:508–513

    PubMed  Google Scholar 

  • Rull V (2015) Pleistocene speciation is not refuge speciation. J Biogeogr 42:602–609

    Google Scholar 

  • Sanders HL (1968) Marine benthic diversity: a comparative study. Am Nat 102:243–282

    Google Scholar 

  • Sanders HL (1969) Benthic marine diversity and the stability-time hypothesis. Brookhaven Symp Biol 22:71–81

    CAS  PubMed  Google Scholar 

  • Schulenberg TS, Stotz DF, Lane DF, O’Neill JP, Parker TA III (2007) Birds of Peru. Princeton University Press, Princeton

    Google Scholar 

  • Schultz ED, Burney CW, Brumfield RT, Polo EM, Cracraft J, Ribas CC (2017) Systematics and biogeography of the Automolus infuscatus complex (Aves; Furnariidae): cryptic diversity reveals western Amazonia as the origin of a transcontinental radiation. Mol Phylogenet Evol 107:503–515

    PubMed  Google Scholar 

  • Schwabe GH (1969) Towards an ecological characterisation of the South American continent. In: Fittkau EJ, Illies J, Klinge A, Schwabw GH, Sioli H (eds) Biogeography and ecology in South America. Dr. W. Junk Publishers, Dordrecht, pp 113–136

    Google Scholar 

  • Shackleton NJ, Opdyke ND (1977) Oxygen isotope and palaeomagnetic evidence for early northern Hemisphere glaciation. Nature 270:216–219

    CAS  Google Scholar 

  • Short LL (1975) A zoogeographic analysis of the South American Chaco avifauna. Bull Am Mus Nat Hist 154:163–352

    Google Scholar 

  • Sick H (1967) Rios e enchentes na Amazonia como obstáculo para avifauna. In: Lent H (ed) Simpósio sobre a Biota Amazonica. CNPq, Rio de Janeiro, pp 495–520

    Google Scholar 

  • Sick H (1993) Birds of Brazil. Princeton University Press, Princeton

    Google Scholar 

  • Silva JMC (1995) Biogeographic analysis of the South American cerrado avifauna. Steenstrupia 21:49–67

    Google Scholar 

  • Silva JMC (1996) Distribution of Amazonian and Atlantic birds in gallery forests of the Cerrado region, South America. Ornithol Neotrop 7:1–18

    Google Scholar 

  • Silva JMC, De Sousa MC, Castelleti CHM (2004) Areas of endemism for passerine birds in Atlantic Forest, South America. Global Ecol Biogeogr 13:85–93

    Google Scholar 

  • Silveira LF, Olmos F, Long AJ (2003) Birds in Atlantic Forest fragments in north-east Brazil. Cotinga 20:32–46

    Google Scholar 

  • Simpson BB (1975) Pleistocene changes in the flora of the high tropical Andes. Paleobiology 1:273–294

    Google Scholar 

  • Simpson BB, Haffer J (1978) Speciation patterns in the Amazonian forest biota. Annu Rev Ecol Syst 9:497–518

    Google Scholar 

  • Smith LB (1962) Origins of the flora of southern Brazil. Bull US Natl Mus 32:215–249

    Google Scholar 

  • Smith BT, Clicka J (2010) The profound influence of the Late Pliocene Panamanian uplift on the exchange, diversification, and distribution of New World birds. Ecography 33:333–342

    Google Scholar 

  • Smith BT, McCormack JE, Cuervo AM, Hickerson MJ, Aleixo A, Cadena CD, Pérez-Emán J, Burney CW, Xie X, Harvey MG, Faircloth BC, Glenn TC, Derryberry EP, Prejean J, Fields S, Brumfield RT (2014) The drivers of tropical speciation. Nature 515:406–409

    CAS  PubMed  Google Scholar 

  • Sobral-Souza T, Lima-Ribeiro MS, Solferini VN (2015) Biogeography of Neotropical Rainforests: past connections between Amazon and Atlantic Forest detected by ecological niche modeling. Evol Ecol 29:643–655. https://doi.org/10.1007/s10682-015-9780-9

    Article  Google Scholar 

  • Sousa-Neves T, Aleixo A, Sequeira F (2013) Cryptic patterns of diversification of a widespread Amazonian woodcreeper species complex (Aves: Dendrocolaptidae) inferred from multilocus phylogenetic analysis: implications for historical biogeography and taxonomy. Mol Phylogenet Evol 68:410–424

    PubMed  Google Scholar 

  • Stattersfield AJ, Crosby MJ, Long AJ, Wege DC (1998) Endemic bird areas of the world. Priorities for biodiversity conservation. BirdLife International, Cambridge

    Google Scholar 

  • Stotz DF, Fitzpatrick JW, Parker TA III, Moskovits DK (1996) Neotropical birds. Ecology and conservation. University of Chicago Press, Chicago

    Google Scholar 

  • Stute M, Forster M, Frischkorn H, Serejo AJF, Clark PS, Broecker WS, Bonani G (1995) Cooling of tropical Brazil (5C) during the last glacial maximum. Science 269:379–383

    CAS  PubMed  Google Scholar 

  • Tanner WF (1968) Tertiary sea-level fluctuations. Palaeogeogr Palaeoclimatol Palaeoecol 5:7–171

    Google Scholar 

  • Thistle D (1983) The role of biologically produced habitat heterogeneity in deep-sea diversity maintenance. Deep-Sea Res 30:1235–1245

    Google Scholar 

  • Thom G, Aleixo A (2015) Cryptic speciation in the white-shouldered antshrike (Thamnophilus aethiops, Aves—Thamnophilidae): the tale of a transcontinental radiation across rivers in lowland Amazonia and the northeastern Atlantic Forest. Mol Phylogenet Evol 82:95–110

    PubMed  Google Scholar 

  • Thomé MTC, Sequeira F, Brusquetti F, Carstens B, Haddad CFB, Trefaut Rodrigues M, Alexandrino J (2016) Recurrent connections between Amazon and Atlantic forests shaped diversity in Caatinga four-eyed frogs. J Biogeogr 43:1045–1056

    Google Scholar 

  • Trujillo-Arias N, Dantas GPM, Arbeláez-Cortés E, Naoki K, Gómez MI, Santos FR, Miyaki CY, Aleixo A, Tubaro PL, Cabanne GS (2017) The niche and phylogeography of a passerine reveal the history of biological diversification between the Andean and the Atlantic forests. Mol Phylogenet Evol 112:107–121

    PubMed  Google Scholar 

  • Van der Hammen T (1961) The Quaternary climatic changes of northern South America. Ann N Y Acad Sci 95:676–683

    Google Scholar 

  • Van der Hammen T (1974) The Pleistocene changes of vegetation and climate in tropical South America. J Biogeogr 1:3–26

    Google Scholar 

  • Van der Hammen T, Absy ML (1994) Amazonia during the last glacial. Palaeogeogr Palaeoclimatol Palaeoecol 109:247–261

    Google Scholar 

  • Vanzolini PE (1968) Geography of the South American gekkonidae (Sauria). Arq Zool 17:85–111

    Google Scholar 

  • Vanzolini PE (1981) A quasi-historical approach to the natural history of the differentiation of reptiles in tropical geographic isolates. Pap Avulsos Zool 34:189–204

    Google Scholar 

  • Vanzolini PE, Williams EE (1970) South American anoles: the geographic differentiation and evolution of the Anolis chrysolepis species group (Sauria, Iguanidae). Arq Zool 19:1–298

    Google Scholar 

  • Vaughan DG (2000) Bedmap subglacial and seabed topography for Antarctica. British Antarctic Survey, Cambridge. www.antarctica.ac.uk/BAS_Science/Highlights/2000/bedmap.html

    Google Scholar 

  • Vergara J, Acosta LE, González-Ittig RE, Vaschetto LM, Gardenal CN (2017) The disjunct pattern of the Neotropical haverstman Discocyrtus dilatatus (Gonyleptidae) explained by climate-driven range shifts in the Quaternary: Paleodistributional and molecular evidence. PLoS One 12(11):e0187983. https://doi.org/10.1371/journal.pone.0187983

    Article  PubMed  PubMed Central  Google Scholar 

  • Vilela RV, Machado T, Ventura K, Fagundes V, Silva MJ, Yonenaga-Yassuda Y (2009) The taxonomic status of the endangered thin-spined porcupine, Chaetomys subspinosus (Olfers, 1818), based on molecular and karyologic data. BMC Evol Biol 9:29

    PubMed  PubMed Central  Google Scholar 

  • Vonhof HB, Kaandorp RJG (2010) Climate variation in Amazonia during the Neogene and the Quaternary. In: Hoorn C, Wesselingh FP (eds) Amazonia: landscape and species evolution: a look into the past. Wiley Blackwell Publishing, New Jersey, pp 201–210

    Google Scholar 

  • Vonhof HB, Wesselingh EP, Kaandorp RJG, Davies GR, van Hinte JE, Guerrero J, Räsänen M, Romero-Pitmann L, Ranzi A (2003) Paleogeography of Miocene Western Amazonia: isotopic composition of moluscan shells constrains the influence of marine incursions. Geol Soc Am Bull 115:983–993

    CAS  Google Scholar 

  • Vuilleumier F (1985) Fossil and recent avifaunas and the interamerican interchange. In: Stehli FG, Webb SD (eds) The Great American Biotic Interchange. Springer, Boston, MA, pp 387–424

    Google Scholar 

  • Wang X, Auler AS, Edwards RL, Cheng H, Cristalli PS, Smart PL, Richards DA, Shen CC (2004) Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432:740–743

    CAS  PubMed  Google Scholar 

  • Wang X, Edwards RL, Auler AS, Cheng H, Kong X, Wang Y, Cruz FW, Dorale JA, Chiang HW (2017) Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature 541:204–207

    CAS  PubMed  Google Scholar 

  • Ward WT, Jessup RW (1965) Changes of sea-levels in southern Australia. Nature 205:791–792

    Google Scholar 

  • Webb SD (1991) Ecogeography and the Great American Interchange. Paleoebiology 17:266–280

    Google Scholar 

  • Webb SD (1995) Biological implications of the middle Miocene Amazon seaway. Science 269:361–362

    CAS  PubMed  Google Scholar 

  • Webb RS, Rind D, Lehman SJ, Healy RJ, Sigman D (1997) Influence of ocean heat transport on the climate of the Last Glacial Maximum. Nature 385:695–699

    CAS  Google Scholar 

  • Weir JT, Price M (2011) Andean uplift promotes lowland speciation through vicariance and dispersal in Dendrocincla woodcreepers. Mol Ecol 20:4550–4563

    PubMed  Google Scholar 

  • Weir JT, Bermingham E, Schluter D (2009) The Great American Biotic Interchange in birds. Proc Natl Acad Sci U S A 106:21737–21742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weir JT, Faccio MS, Cruz PP, Barrera-Guzmán AO, Aleixo A (2015) Hybridization in headwater regions, and the role of rivers as drivers of speciation in Amazonian birds. Evolution 69:1823–1834

    PubMed  Google Scholar 

  • Wesselingh FP, Salo J (2006) A Miocene perspective of the evolution of Amazonian biota. Scri Geol 133:439–445

    Google Scholar 

  • Wesselingh FP, Räsänen ME, Irion GE, Vonhof HB, Kaandorp R, Renema W, Romero Pitman L, Gingras M (2002) Lake Pebas: a palaeoecological reconstruction of a Miocene, long lived lake in western Amazonia. Cenozoic Res 1:35–81

    Google Scholar 

  • Willis EO (1992) Zoogeographical origins of eastern Brazilian birds. Ornithol Neotrop 3:1–15

    Google Scholar 

  • Willis KJ, Whittaker RJ (2000) The refugial debate. Science 287:1406–1407

    CAS  PubMed  Google Scholar 

  • Zeuner FE (1945) The Pleistocene period. In: Its climate, chronology and faunal successions. Ray Society, London

    Google Scholar 

  • Zink RM, Barrowclough GF (2008) Mitochondrial DNA under siege in avian phylogeography. Mol Ecol 17:2107–2121

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Electronic Supplementary Materials Appendix 1

. Check-list of the endemic birds of Amazonia. (DOCX 20 kb)

Electronic Supplementary Materials Appendix 2

. Check-list of the endemic birds of the Pacific Forest. (DOCX 15 kb)

Electronic Supplementary Materials Appendix 3

. Check-list of the endemic birds of the Eastern Andean Slopes. (DOCX 13 kb)

Electronic Supplementary Materials Appendix 4

. Check-list of the endemic birds of the Atlantic Forest. (DOC 38 kb)

Appendices

Appendices

1.1 Appendix 1: Endemic Birds of the “Pacific Slopes Center”

Odontophorus melanonotus, Heliangelus strophianus, Heliodoxa imperatrix, Coeligena wilsoni, Urosticte benjamini, Aglaiocercus coelestis, Eriocnemis mirabilis, Calliphlox mitchellii, Haplophaedia lugens, Megascops columbianus, Glaucidium nubicola, Semnornis ramphastinus, Andigena laminirostris, Micrastur plumbeus, Sipia nigricauda, Grallaria flavotincta, Scytalopus vicinior, Pseudocolaptes johnsoni, Thripadectes ignobilis, Margarornis stellatus, Pipreola jucunda, Cephalopterus penduliger, Machaeropterus deliciosus, Cyanolyca pulchra, Entomodestes coracinus, Diglossa indigotica, Anisognathus notabilis, Chlorochrysa phoenicotis, Bangsia edwardsi, B. aureocincta, Ixothraupis rufigula, Chlorothraupis stolzmanni, Oreothraupis arremonops, Chlorospingus semifuscus, C. flavovirens, Chlorophonia flavirostris.

1.2 Appendix 2: Endemic Birds of the “Atlantic Forest Mountains Center”

Piculus aurulentus, Dysithamnus xanthopterus, Drymophila rubricollis, D. genei, D. ochropyga, Myrmoderus loricatus, Merulaxis ater, Anabazenops fuscus, Cranioleuca pallida, Phylloscartes difficilis, Carpornis cucullata, Tijuca atra, T. condita, Ilicura militaris, Sporophila frontalis, Castanozoster thoracicus, Tangara cyanocephala, T. desmaresti, T. cyanoventris.

1.3 Appendix 3: Species that Would Have Been Involved in the Corridor Joining the Atlantic Forest with the Yungas

Crypturellus obsoletus, Penelope obscura, Lurocalis semitorquatus, Antrostomus sericocaudatus, Lophornis chalybeus, Tigrisoma fasciatum, Parabuteo leucorrhous, Aegolius harrisii, Batara cinerea, Thamnophilus ruficapillus, Herpsilochmus rufimarginatus, Chamaeza campanisona, Xenops minutus, Lochmias nematura, Philydor rufum, Phylloscartes ventralis, Phyllomyias burmeisteri, Elaenia obscura, Poecilotriccus plumbeiceps, Ramphotrigon megacephalum, Pachyramphus castaneus, Oxyruncus cristatus, Piprites chloris, Turdus albicollis, Trichothraupis melanops, Cissopis leverianus, Pipraeidea melanonota, Arremon flavirostris, Habia rubica, Myiothlypis rivularis, Cacicus chrysopterus, Euphonia cyanocephala, Chlorophonia cyanea.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nores, M. (2020). Avian Diversity in Humid Tropical and Subtropical South American Forests, with a Discussion About Their Related Climatic and Geological Underpinnings. In: Rull, V., Carnaval, A. (eds) Neotropical Diversification: Patterns and Processes. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-31167-4_8

Download citation

Publish with us

Policies and ethics