Skip to main content

Compartmental Modeling Software: A Fast, Discrete Stochastic Framework for Biochemical and Epidemiological Simulation

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11773))

Included in the following conference series:

Abstract

The compartmental modeling software (CMS) is an open source computational framework that can simulate discrete, stochastic reaction models which are often utilized to describe complex systems from epidemiology and systems biology. In this article, we report the computational requirements, the novel input model language, the available numerical solvers, and the output file format for CMS. In addition, the CMS code repository also includes a library of example model files, unit and regression tests, and documentation. Two examples, one from systems biology and the other from computational epidemiology, are included that highlight the functionality of CMS. We believe the creation of computational frameworks such as CMS will advance our scientific understanding of complex systems as well as encourage collaborative efforts for code development and knowledge sharing.

C. W. Lorton, J. L. Proctor and M. K. Roh—Co-first author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CMS Documentation. http://idmod.org/docs/cms/

  2. CMS Repository. https://github.com/InstituteforDiseaseModeling/IDM-CMS

  3. JSON organization. http://www.json.org

  4. NUnit 3.6.1. https://github.com/nunit/nunit/releases/3.6.1

  5. Python for .NET. http://pythonnet.github.io/

  6. Abel, J.H., Drawert, B., Hellander, A., Petzold, L.R.: GillesPy: a python package for stochastic model building and simulation. IEEE Life Sci. Lett. 2(3), 35–38 (2016)

    Article  Google Scholar 

  7. Auger, A., Chatelain, P., Koumoutsakos, P.: R-leaping: accelerating the stochastic simulation algorithm by reaction leaps. J. Chem. Phys. 125(8), 084103 (2006). https://doi.org/10.1063/1.2218339

    Article  Google Scholar 

  8. Barrio, M., Burrage, K., Leier, A., Tian, T.: Oscillatory regulation of hes1: discrete stochastic delay modelling and simulation. PLoS Comput. Biol. 2(9), e117 (2006). https://doi.org/10.1371/journal.pcbi.0020117

    Article  Google Scholar 

  9. Bayati, B.S.: Fractional diffusion-reaction stochastic simulations. J. Chem. Phys. 138(10), 104117 (2013). https://doi.org/10.1063/1.4794696

    Article  Google Scholar 

  10. Cai, X.: Exact stochastic simulation of coupled chemical reactions with delays. J. Chem. Phys. 126(12), 124108 (2007). https://doi.org/10.1063/1.2710253

    Article  Google Scholar 

  11. Cao, Y., Gillespie, D.T., Petzold, L.R.: Avoiding negative populations in explicit poisson tau-leaping. J. Chem. Phys. 123(5), 054104 (2005). https://doi.org/10.1063/1.1992473

    Article  Google Scholar 

  12. Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys. 124(4), 044109 (2006). https://doi.org/10.1063/1.2159468

    Article  Google Scholar 

  13. Daigle, B.J., Roh, M.K., Gillespie, D.T., Petzold, L.R.: Automated estimation of rare event probabilities in biochemical systems. J. Chem. Phys. 134(4), 044110 (2011). https://doi.org/10.1063/1.3522769

    Article  Google Scholar 

  14. Drawert, B., Lawson, M.J., Petzold, L., Khammash, M.: The diffusive finite state projection algorithm for efficient simulation of the stochastic reaction-diffusion master equation. J. Chem. Phys. 132(7), 074101 (2010). https://doi.org/10.1063/1.3310809

    Article  Google Scholar 

  15. Drawert, B., Trogdon, M., Toor, S., Petzold, L., Hellander, A.: Molns: a cloud platform for interactive, reproducible, and scalable spatial stochastic computational experiments in systems biology using pyurdme. SIAM J. Sci. Comput. 38(3), C179–C202 (2016)

    Article  MathSciNet  Google Scholar 

  16. Eichner, M., Dietz, K.: Eradication of poliomyelitis: when can one be sure that polio virus transmission has been terminated? Am. J Epidemiol. 143(8), 816–822 (1996)

    Article  Google Scholar 

  17. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104(9), 1876–1889 (2000). https://doi.org/10.1021/jp993732q

    Article  Google Scholar 

  18. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977). https://doi.org/10.1021/j100540a008

    Article  Google Scholar 

  19. Gillespie, D.T.: Markov Processes: An Introduction for Physical Scientists. ACADEMIC PR INC, Cambridge (1991). https://www.ebook.de/de/product/3655742/danieltgillespiemarkovprocessesanintroductionforphysicalscientists.html

    MATH  Google Scholar 

  20. Hucka, M., et al.: The systems biology markup language (sbml): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)

    Article  Google Scholar 

  21. Kew, O., Pallansch, M.: Breaking the last chains of poliovirus transmission: progress and challenges in global polio eradication. Annu. Rev. Virol. 5, 427–451 (2018)

    Article  Google Scholar 

  22. Lampoudi, S., Gillespie, D.T., Petzold, L.R.: The multinomial simulation algorithm for discrete stochastic simulation of reaction-diffusion systems. J. Chem. Phys. 130(9), 094104 (2009). https://doi.org/10.1063/1.3074302

    Article  Google Scholar 

  23. Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124(4), 044104 (2006). https://doi.org/10.1063/1.2145882

    Article  MATH  Google Scholar 

  24. Roh, M.K., Daigle, B.J., Gillespie, D.T., Petzold, L.R.: State-dependent doubly weighted stochastic simulation algorithm for automatic characterization of stochastic biochemical rare events. J. Chem. Phys. 135(23), 234108 (2011). https://doi.org/10.1063/1.3668100

    Article  Google Scholar 

  25. Sanft, K.R., Wu, S., Roh, M., Fu, J., Lim, R.K., Petzold, L.R.: Stochkit2: software for discrete stochastic simulation of biochemical systems with events. Bioinformatics 27(17), 2457–2458 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

JLP, MKR, CWL, and PW would like to thank Bill and Melinda Gates for their active support of the Institute for Disease Modeling and their sponsorship through the Global Good Fund. The authors would also like to thank Mandy Izzo for her assistance illustrating Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher W. Lorton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lorton, C.W., Proctor, J.L., Roh, M.K., Welkhoff, P.A. (2019). Compartmental Modeling Software: A Fast, Discrete Stochastic Framework for Biochemical and Epidemiological Simulation. In: Bortolussi, L., Sanguinetti, G. (eds) Computational Methods in Systems Biology. CMSB 2019. Lecture Notes in Computer Science(), vol 11773. Springer, Cham. https://doi.org/10.1007/978-3-030-31304-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31304-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31303-6

  • Online ISBN: 978-3-030-31304-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics