Skip to main content

Automated Design of Efficient Supports in FDM 3D Printing of Anatomical Phantoms

  • Conference paper
  • First Online:
XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019 (MEDICON 2019)

Abstract

Recent improvements in image segmentation techniques enabled the (semi)automatic extraction of biostructures surfaces from 3D medical imaging data. The diffusion of 3D printing technologies promoted their introduction in the medical field, giving rise to several applications, such as the development of 3D-printed anatomical imaging phantoms. These devices provide controlled experimental environments for the improvement of medical imaging techniques, as they mimic the morphological and physiological features of different body parts. However, to obtain a 3D printable model from medical imaging data, different post-processing steps are needed, which require a considerable effort. Supports generation is often a critical task, as it requires to find the minimum amount of support structures necessary to hold a part in place during the printing process. This is particularly difficult for complex anthropomorphic models, for which a high printing level of detail, along with a reasonable number of internal supports, is usually needed. In this paper, an automatic method for the design of efficient support structures is proposed, which is suitable for 3D printing of complex anatomical phantoms, even with non-professional FDM 3D printers. A custom design software was developed, which places paraboloid-shaped shells to support all and only the critical points of the 3D model. This provided different advantages over support generation by means of common slicing software, allowing a reduction of material waste and printing times, along with an easier and faster dissolution of soluble supports for the clean-up of phantoms empty volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oropallo, W., Piegl, L.A.: Ten challenges in 3D printing. Engineering with Computers 32, 135 (2016). https://doi.org/10.1007/s00366-015-0407-0

    Article  Google Scholar 

  2. Bücking, T.M., Hill, E.R., Robertson, J.L., Maneas, E., Plumb, A.A., Nikitichev, D.I.: From medical imaging data to 3D printed anatomical models. PLoS ONE 12(5), e0178540 (2017). https://doi.org/10.1371/journal.pone.0178540

    Article  Google Scholar 

  3. Rengier, F., Mehndiratta, A., von Tengg-Kobligk, H., et al.: 3D printing based on imaging data: review of medical applications. Int. J. CARS 5, 335 (2010). https://doi.org/10.1007/s11548-010-0476-x

    Article  Google Scholar 

  4. Tam, M.D.B.S., Laycock, S.D., Brown, J.R.I., Jakeways, M.: 3D printing of an aortic aneurysm to facilitate decision making and device selection for endovascular aneurysm repair in complex neck anatomy. J. Endovasc. Ther. 20(6), 863–867 (2013). https://doi.org/10.1583/13-4450MR.1

    Article  Google Scholar 

  5. Gargiulo, P., Árnadóttir, Í., Gíslason, M., Edmunds, K., Ólafsson, I.: New directions in 3D medical modeling: 3D-printing anatomy and functions in neurosurgical planning. J. Healthc. Eng. 2017, 8 (2017). https://doi.org/10.1155/2017/1439643. Article ID 1439643

    Article  Google Scholar 

  6. Schmauss, D., Haeberle, S., Hagl, C., Sodian, R.: Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience. Eur. J. Cardio-Thorac. Surg. 47(6), 1044–1052 (2015). https://doi.org/10.1093/ejcts/ezu310

    Article  Google Scholar 

  7. Vukicevic, M., Mosadegh, B., Min, J.K., Little, S.H.: Cardiac 3D printing and its future directions. JACC Cardiovasc. Imaging 10(2), 171–184 (2017). https://doi.org/10.1016/j.jcmg.2016.12.001

    Article  Google Scholar 

  8. Noecker, A.M., Chen, J.F., Zhou, Q., White, R.D., Kopcak, M.W., Arruda, M.J., Duncan, B.W.: Development of patient-specific three-dimensional pediatric cardiac models. ASAIO J. 52(3), 349–353 (2006). https://doi.org/10.1097/01.mat.0000217962.98619.ab

    Article  Google Scholar 

  9. Waran, V., Narayanan, V., Karuppiah, R., Thambynayagam, H.C., Muthusamy, K.A., Rahman, Z.A.A., Kirollos, R.W.: Neurosurgical endoscopic training via a realistic 3-dimensional model with pathology. Simul. Healthc.: J. Soc. Simul. Healthc. 10(1), 43–48 (2015). https://doi.org/10.1097/sih.0000000000000060

    Article  Google Scholar 

  10. Singare, S., Dichen, L., Bingheng, L., Zhenyu, G., Yaxiong, L.: Customized design and manufacturing of chin implant based on rapid prototyping. Rapid Prototyping J. 11(2), 113–118 (2005). https://doi.org/10.1108/13552540510589485

    Article  Google Scholar 

  11. Cohen, A., Laviv, A., Berman, P., Nashef, R., Abu-Tair, J.: Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 108(5), 661–666 (2009). https://doi.org/10.1016/j.tripleo.2009.05.023

    Article  Google Scholar 

  12. Parthasarathy, J.: 3D modeling, custom implants and its future perspectives in craniofacial surgery. Ann. Maxillofac. Surg. 4(1), 9 (2014). https://doi.org/10.4103/2231-0746.133065

    Article  Google Scholar 

  13. Zopf, D.A., Hollister, S.J., Nelson, M.E., Ohye, R.G., Green, G.E.: Bioresorbable airway splint created with a three-dimensional printer. N. Engl. J. Med. 368(21), 2043–2045 (2013). https://doi.org/10.1056/nejmc1206319

    Article  Google Scholar 

  14. Leary, M., Kron, T., Keller, C., Franich, R., Lonski, P., Subic, A., Brandt, M.: Additive manufacture of custom radiation dosimetry phantoms: An automated method compatible with commercial polymer 3D printers. Mater. Des. 86, 487–499 (2015). https://doi.org/10.1016/j.matdes.2015.07.052

    Article  Google Scholar 

  15. Filippou, V., Tsoumpas, C.: Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound. Med. Phys. 45, e740–e760 (2018). https://doi.org/10.1002/mp.13058

    Article  Google Scholar 

  16. Leng, S., Chen, B., Vrieze, T., Kuhlmann, J., Yu, L., Alexander, A., Jane Matsumoto, J., Morris, J., McCollough, C.H.: Construction of realistic phantoms from patient images and a commercial three-dimensional printer. J. Med. Imaging 3(3), 033501 (2016). https://doi.org/10.1117/1.jmi.3.3.033501

    Article  Google Scholar 

  17. Zaidi, H., Tsui, B.M.W.: Review of computational anthropomorphic anatomical and physiological models. Proc. IEEE 97(12), 1938–1953 (2009). https://doi.org/10.1109/jproc.2009.2032852

    Article  Google Scholar 

  18. Alfano, B., Comerci, M., Larobina, M., Prinster, A., Hornak, J.P., Selvan, S.E., Amato, U., Quarantelli, M., Tedeschi, G., Brunetti, A., Salvatore, M.: An MRI digital brain phantom for validation of segmentation methods. Med. Image Anal. 15(3), 329–339 (2011). https://doi.org/10.1016/j.media.2011.01.004

    Article  Google Scholar 

  19. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., Buatti, J., Aylward, S.R., Miller, J.V., Pieper, S., Kikinis, R.: 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30(9), 1323–1341 (2012). PMID: 22770690

    Article  Google Scholar 

  20. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graphics 21(4), 163–169 (1987). https://doi.org/10.1145/37402.37422

    Article  Google Scholar 

  21. Friedman, T., Michalski, M., Goodman, T.R., Brown, J.E.: 3D printing from diagnostic images: a radiologist’s primer with an emphasis on musculoskeletal imaging putting the 3D printing of pathology into the hands of every physician. Skeletal Radiol. 45(3), 307–321 (2015). https://doi.org/10.1007/s00256-015-2282-6

    Article  Google Scholar 

Download references

Acknowledgment

Funding by the CNR Strategic Project “The Aging: Technological and Molecular Innovations Aiming to Improve the Health of Older Citizens” (http://www.progettoinvecchiamento.it) and by the Italian Ministry for Education, University and Research (Project MOLIM ONCOBRAIN LAB) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Agnese Pirozzi .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pirozzi, M.A., Andreozzi, E., Magliulo, M., Gargiulo, P., Cesarelli, M., Alfano, B. (2020). Automated Design of Efficient Supports in FDM 3D Printing of Anatomical Phantoms. In: Henriques, J., Neves, N., de Carvalho, P. (eds) XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019. MEDICON 2019. IFMBE Proceedings, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-030-31635-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31635-8_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31634-1

  • Online ISBN: 978-3-030-31635-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics