Skip to main content

Method for Finding the Limits of Blood Vessel Landmarks in Eye Fundus Images Based on Distances in Graphs: Preliminary Results

  • Conference paper
  • First Online:
XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019 (MEDICON 2019)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 76))

  • 159 Accesses

Abstract

The paper proposes a method to process blood vessel landmarks in eye fundus images. The proposed method is based on finding a shortest cycle in a weighted graph, corresponding to a set of possible tracked blood vessel slices and paths between them. In turn, the paths are found by finding a shortest path in a weighted graph, taking gradients into account. The method has been tried out with DRIVE and IOSTAR databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasi-Sureshjani, S., Smit-Ockeloen, I., Bekkers, E., Dashtbozorg, B., ter Haar Romeny, B.: Automatic detection of vascular bifurcations and crossings in retinal images using orientation scores. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). IEEE (2016). https://doi.org/10.1109/isbi.2016.7493241

  2. Aguiar, M., Castano, F., Trujillo, M.: Segmentation and detection of vascular bifurcations and crossings in retinal images. In: Communications in Computer and Information Science, pp. 432–443. Springer International Publishing (2018). https://doi.org/10.1007/978-3-319-98998-3/_33

  3. Al-Diri, B., Hunter, A.: Automated measurements of retinal bifurcations. In: O. Dössel, W.C. Schlegel (eds.) World Congress on Medical Physics and Biomedical Engineering, 7–12 September 2009, Munich, Germany, IFMBE Proceedings, vol. 25/XI, pp. 205–208. Springer (2009)

    Google Scholar 

  4. Bhuiyan, A., Nath, B., Chua, J., Ramamohanarao, K.: Automatic detection of vascular bifurcations and crossovers from color retinal fundus images. In: Third International IEEE Conference on Signal-Image Technologies and Internet-Based System 2007. SITIS 2007, pp. 711–718 (2007). https://doi.org/10.1109/SITIS.2007.86

  5. Bhuiyan, A., Nath, B., Ramamohanarao, K.: Detection and classification of bifurcation and branch points on retinal vascular network. In: 2012 International Conference on Digital Image Computing Techniques and Applications (DICTA). IEEE (2012). https://doi.org/10.1109/dicta.2012.6411742

  6. Ghanaei, Z., Pourreza, H., Banaee, T.: Automatic graph-based method for classification of retinal vascular bifurcations and crossovers. In: 2016 6th International Conference on Computer and Knowledge Engineering (ICCKE). IEEE (2016). https://doi.org/10.1109/iccke.2016.7802145

  7. Kalaie, S., Gooya, A.: Vascular tree tracking and bifurcation points detection in retinal images using a hierarchical probabilistic model. Comput. Methods Programs Biomed. 151, 139–149 (2017). https://doi.org/10.1016/j.cmpb.2017.08.018

    Article  Google Scholar 

  8. Kang, J., Heo, S., Hyung, W.J., Lim, J.S., Lee, S.: 3D active vessel tracking using an elliptical prior. IEEE Trans. Image Process. 27(12), 5933–5946 (2018). https://doi.org/10.1109/tip.2018.2862346

    Article  MathSciNet  Google Scholar 

  9. Luo, T., Gast, T.J., Vermeer, T.J., Burns, S.A.: Retinal vascular branching in healthy and diabetic subjects. Invest. Ophthalmol. Vis. Sci. 58(5), 2685 (2017). https://doi.org/10.1167/iovs.17-21653

    Article  Google Scholar 

  10. Mohan, V., Sundaramoorthi, G., Tannenbaum, A.: Tubular surface segmentation for extracting anatomical structures from medical imagery. IEEE Trans. Med. Imaging 29(12), 1945–1958 (2010). https://doi.org/10.1109/tmi.2010.2050896

    Article  Google Scholar 

  11. Morales, S., Naranjo, V., Angulo, J., Legaz-Aparicio, A., Verdú-Monedero, R.: Retinal network characterization through fundus image processing: significant point identification on vessel centerline. Signal Process. Image Commun. 59, 50–64 (2017). https://doi.org/10.1016/j.image.2017.03.013

    Article  Google Scholar 

  12. Patašius, M.: Akies dugno vaizdų automatinė analizė. Ph.D. thesis, Kauno technologijos universitetas (2010)

    Google Scholar 

  13. Patašius, M., Marozas, V., Jegelevičius, D., Lukoševičius, A.: Recursive algorithm for blood vessel detection in eye fundus images: preliminary results. In: Dössel, O., Schlegel, W.C. (eds.) World Congress on Medical Physics and Biomedical Engineering, 7–12 September 2009, Munich, Germany, IFMBE Proceedings, vol. 25/XI, pp. 212–215. Springer, Munich (2009)

    Google Scholar 

  14. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004). https://doi.org/10.1109/TMI.2004.825627

    Article  Google Scholar 

  15. Sutanty, E., Rahayu, D.A., Rodiah, Susetianingtias, D.T., Madenda, S.: Retinal blood vessel segmentation and bifurcation detection using combined filters. In: 2017 3rd International Conference on Science in Information Technology (ICSITech). IEEE (2017). https://doi.org/10.1109/icsitech.2017.8257176

  16. Treigys, P.: Grafinių oftalmologinių ir termovizinių duomenų analizės metodų kīrimas ir taikymas. Ph.D. thesis, Matematikos ir informatikos institutas (2010)

    Google Scholar 

  17. Tsai, C.L., Stewart, C.V., Tanenbaum, H.L., Roysam, B.: Model-based method for improving the accuracy and repeatability of estimating vascular bifurcations and crossovers from retinal fundus images. IEEE Trans. Inf Technol. Biomed. 8(2), 122–130 (2004). https://doi.org/10.1109/TITB.2004.826733

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by a grant (No. S-MIP-17-16) from the Research Council of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martynas Patašius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patašius, M., Šimkienė, J., Sokas, D., Pranskūnas, A. (2020). Method for Finding the Limits of Blood Vessel Landmarks in Eye Fundus Images Based on Distances in Graphs: Preliminary Results. In: Henriques, J., Neves, N., de Carvalho, P. (eds) XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019. MEDICON 2019. IFMBE Proceedings, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-030-31635-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31635-8_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31634-1

  • Online ISBN: 978-3-030-31635-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics