Skip to main content

Numerical Simulation on DC Breakdown of Polyimide Based on Charge Transport and Molecular Chain Displacement

  • Conference paper
  • First Online:
Proceedings of the 21st International Symposium on High Voltage Engineering (ISH 2019)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 598))

Included in the following conference series:

Abstract

A DC breakdown model combining charge transport and molecular chain displacement is utilized to simulate the thickness-dependent DC electrical breakdown of polyimide and reveal the physical mechanism of DC breakdown. The free volume existing in dielectric materials provide electrons with free path to be accelerated and gain energy under the electric field. Molecular chains with occupied deep traps can be displaced by Coulomb force under electric field, furthermore, the displacement will enlarge the local free volume. The energy of electron w is determined by the local electric field F and the length of free volume λL, which can be expressed as w = eFλL. When the maximum energy of electrons exceed the deep trap energy level, the local current and temperature will rise in a surge, triggering breakdown eventually. The simulation results reveal the dynamics of space charge and electric field inside polyimide material before the DC electrical breakdown occurs. The breakdown strength Fb of polyimide films obtained from the DC breakdown model decrease with an increase in sample thickness d, which satisfies an inverse power law Fb = kdn with n = 0.30. A strong dependence can be found between breakdown field and sample thickness when the influence from molecular chain displacement on free volume is taken into consideration. The simulation results indicate that the DC electrical breakdown may be the result of the interaction of space charge accumulation effect and molecular chain displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cooper, R., Rowson, C.H., Watson, D.B.: Intrinsic electric strength of polythene. Nature 197(4868), 663–664 (1963)

    Article  Google Scholar 

  2. Diaham, S., Zelmat, S., Locatelli, M.L.: Dielectric breakdown of polyimide films: area, thickness and temperature dependence. IEEE TDEI 17(1), 18–27 (2010)

    Google Scholar 

  3. Kim, H.K., Shi, F.G.: Thickness dependent dielectric strength of a low-permittivity dielectric film. IEEE TDEI 8(2), 248–252 (2001)

    Google Scholar 

  4. Laurent, C., Teyssedre, G., Le Roy, S., Baudoin, F.: Charge dynamics and its energetic features in polymeric materials. IEEE TDEI 20(2), 357–381 (2013)

    Google Scholar 

  5. Matsui, K., Tanaka, Y., Takada, T., Fukao, T., Alison, J.M.: Space charge behavior in low density polyethylene at pre-breakdown. IEEE TDEI 12(3), 406–415 (2005)

    Google Scholar 

  6. Zha, J.W., Dang, Z.M., Song, H.T., Yin, Y., Chen, G.: Dielectric properties and effect of electrical aging on space charge accumulation in polyimide/TiO2 nanocomposite films. J. Appl. Phys. 108, 094113 (2010)

    Article  Google Scholar 

  7. Chen, G., Zhao, J., Li, S., Zhong, L.: Origin of thickness dependent dc electrical breakdown in dielectrics. Appl. Phys. Lett. 100, 222904 (2012)

    Article  Google Scholar 

  8. Fox, T.G., Flory, P.J.: The glass temperature and related properties of polystyrene. Influence of molecular weight. J. Polym. Sci. 14(75), 315–319 (1954)

    Article  Google Scholar 

  9. Fox, Jr., T.G., Flory, P.J.: Further studies on the melt viscosity of polyisobutylene. J. Phys. Chem. B. 55(2), 221–234 (1951)

    Google Scholar 

  10. Artbauer, J.: Electric strength of polymers. J. Phys. D. 29(2), 446–456 (1996)

    Article  Google Scholar 

  11. Min, D., Li, S., Ohki, Y.: Numerical simulation on molecular displacement and DC breakdown of LDPE. IEEE TDEI 23(1), 507–516 (2016)

    Google Scholar 

  12. Dang, Z.M., Zhou, T., Yao, S.H., Yuan, J.K., Zha, J.W., Song, H.T.: Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv. Mater. 21(21), 2077–2082 (2010)

    Google Scholar 

  13. Li, S., Min, D., Wang, W., Chen, G.: Modelling of dielectric breakdown through charge dynamics for polymer nanocomposites. IEEE TDEI 23(6), 3476–3485 (2017)

    Google Scholar 

  14. Li, S., Zhu, Y., Min, D., Chen, G.: Space charge modulated electrical breakdown. Sci. Rep. 6, 32588 (2016)

    Article  Google Scholar 

  15. Hoang, A.T., Pallon, L., Liu, D., Serdyuk, Y.V., Gubanski, S.M., Gedde, U.W.: Charge transport in LDPE nanocomposites Part I—experimental approach. Polymers 8, 87 (2016)

    Article  Google Scholar 

  16. Le Roy, S., Segur, P., Teyssedre, G., Laurent, C.: Description of bipolar charge transport in polyethylene using a fluid model with a constant mobility: model prediction. J. Phys. D. 37(2), 298–305 (2004)

    Article  Google Scholar 

  17. Kuik, M., Koster, L.J.A., Wetzelaer, G.A.H., Blom, P.W.M.: Trap-assisted recombination in disordered organic semiconductors. Phys. Rev. Lett. 107, 25 (2011)

    Article  Google Scholar 

  18. Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. Lett. 87(5), 835–842 (1952)

    MATH  Google Scholar 

  19. Kuik, M., Koster, L.J.A., Dijkstra, A.G., Wetzelaer, G.A.H., Blom, P.W.M.: Non-radiative recombination losses in polymer light-emitting diodes. Org. Electron. 13(6), 969–974 (2012)

    Article  Google Scholar 

  20. Lowell, J.: Absorption and conduction currents in polymers: a unified model. J. Phys. D. 23(2), 205–210 (1990)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by State Key Laboratory of Advanced Power Transmission Technology (Grant No. GEIRI-SKL-2018-010), the National Basic Research Program of China (grant No. 2015CB251003), and the National Natural Science Foundation of China (grant No. 51507124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daomin Min .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y. et al. (2020). Numerical Simulation on DC Breakdown of Polyimide Based on Charge Transport and Molecular Chain Displacement. In: Németh, B. (eds) Proceedings of the 21st International Symposium on High Voltage Engineering. ISH 2019. Lecture Notes in Electrical Engineering, vol 598. Springer, Cham. https://doi.org/10.1007/978-3-030-31676-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31676-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31675-4

  • Online ISBN: 978-3-030-31676-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics