Skip to main content

Deep Learning-Based Pedestrian Detection for Automated Driving: Achievements and Future Challenges

  • Chapter
  • First Online:
Development and Analysis of Deep Learning Architectures

Part of the book series: Studies in Computational Intelligence ((SCI,volume 867))

Abstract

Deep learning is considered as a key technology for the development of advanced driver assistance systems and future automated driving. Focus lies especially on the perception of the environment by camera, Radar, and Lidar sensors and fusion concepts. Camera-based perception includes the detection of road users. Highest detection performance is especially required for detecting vulnerable road users such as pedestrians and bicycle drivers. Here, tremendous improvement in vision-based object detection has been achieved within the past decade. Research on object detection has been stimulated by public datasets. The results on public benchmarks show the progress of pedestrian detectors from hand-crafted features, over part-based models towards deep learning. The gap between human and machine performance becomes smaller, leading to the question whether pedestrian detection is solved when the detection performance reaches human performance? As false detections can lead to hazardous situations in traffic scenarios, the expectations on the performance of artificial intelligence for advanced driver assistance systems and automated driving often go beyond human performance. Challenges are precise localization, occlusion, distant objects, and corner cases, where only little or no training data is available. To foster research in this direction, a new comprehensive dataset for pedestrian detection at night has been released. This chapter first introduces vision-based perception of road users as a safety-critical application with increasing demand on detection performance. In the second part, it summarizes concepts for pedestrian detection, including an overview on public datasets and evaluation metrics. The dependency between task complexity and task performance is discussed. Based on this discussion, challenges in pedestrian detection are identified and future directions are outlined. Further improvements in performance can be achieved by including components such as tracking, scene understanding, and sensor fusion. In conclusion, the application of deep learning to advanced driver assistance systems and automated driving is driven by the goal of achieving safe maneuvering in any traffic scene, any weather condition, and under real-time constraints. This places high demands on the development of deep network architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hinton, G.E., Osindero, S., Teh, Y.W.: Deep machine learning-a new frontier in artificial intelligence research. A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  2. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  3. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  4. Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama, S., Murphy, K.: Speed/accuracy trade-offs for modern convolutional object detectors. In: IEEE CVPR, vol. 4, July 2017

    Google Scholar 

  5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  6. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Hinton, G.E.: A practical guide to training restricted Boltzmann machines. In: Neural Networks: Tricks of the Trade, pp. 599–619. Springer, Berlin (2012)

    Google Scholar 

  9. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)

    Google Scholar 

  10. Mohamed, A.R., Dahl, G.E., Hinton, G.: Acoustic modeling using deep belief networks. IEEE Trans. Audio Speech Lang. Process. 20(1), 14–22 (2012)

    Article  Google Scholar 

  11. Mhaskar, H.N.: Neural networks for optimal approximation of smooth and analytic functions. Neural Comput. 8(1), 164–177 (1996)

    Article  Google Scholar 

  12. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE, June 2005

    Google Scholar 

  13. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  14. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  15. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: AAAI, vol. 4, p. 12, February 2017

    Google Scholar 

  16. Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., Colmenarejo, S.G., Grefenstette, E., Ramalho, T., Agapiou, J., Badia, A.P.: Hybrid computing using a neural network with dynamic external memory. Nature 538(7626), 471 (2016)

    Article  Google Scholar 

  17. Russakovsky*, O., Deng*, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (2015) (* = equal contribution)

    Google Scholar 

  18. Mhaskar, H., Liao, Q., Poggio, T.A.: When and why are deep networks better than shallow ones? In: Association for the Advancement of Artificial Intelligence, pp. 2343–2349 (2017)

    Google Scholar 

  19. Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Kingsbury, B., Sainath, T.: Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Process. Mag. 29 (2012).

    Article  Google Scholar 

  20. Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: a benchmark. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 304–311. IEEE, June 2009

    Google Scholar 

  21. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2012)

    Article  Google Scholar 

  22. Zhang, S., Benenson, R., Omran, M., Hosang, J., Schiele, B.: Towards reaching human performance in pedestrian detection. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 973–986 (2018)

    Article  Google Scholar 

  23. Zhang, S., Benenson, R., Omran, M., Hosang, J., Schiele, B.: How far are we from solving pedestrian detection? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1259–1267 (2016)

    Google Scholar 

  24. Zhang, L., Lin, L., Liang, X., He, K.: Is faster R-CNN doing well for pedestrian detection? In: European Conference on Computer Vision, pp. 443–457. Springer, Cham, Oct 2016

    Chapter  Google Scholar 

  25. Fattal, A.K., Karg, M., Scharfenberger, C., Adamy, J.: Distant vehicle detection: how well can region proposal networks cope with tiny objects at low resolution? In: 6th Workshop on Computer Vision for Road Scene Understanding and Autonomous Driving, European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  26. Neumann, L., Karg, M., Zhang, S., Scharfenberger, C., Piegert, E., Mistr, S., Prokofyeva, O., Thiel, R., Vedaldi, A., Zisserman, A., Schiele, B.: NightOwls: a pedestrians at night dataset. In: 14th Asian Conference on Computer Vision (ACCV) (2018)

    Google Scholar 

  27. Batzer, A.K., Scharfenberger, C., Karg, M., Lueke, S., Adamy, J.: Generic hypothesis generation for small and distant objects. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 2171–2178. IEEE, Nov 2016

    Google Scholar 

  28. Road Traffic, Destatis, Federal Statistical Office of Germany, Series 8, vol. 7 (2017)

    Google Scholar 

  29. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  30. Mao, J., Xiao, T., Jiang, Y., Cao, Z.: What can help pedestrian detection? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3127–3136 (2017)

    Google Scholar 

  31. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  32. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  33. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. arXiv:1612.08242 (2017)

  34. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: SSD: single shot multibox detector. In: European Conference on Computer Vision, pp. 21–37. Springer, Cham, Oct 2016

    Chapter  Google Scholar 

  35. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)

    Google Scholar 

  36. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: European Conference on Computer Vision, pp. 646–661. Springer, Cham, Oct 2016

    Chapter  Google Scholar 

  37. Daya, I., Shafiee, M., Karg, M., Scharfenberger, C., Wong, A.: On Robustness of deep neural networks: a comprehensive study on the effect of architecture and weight initialization to susceptibility and transferability of adversarial attacks. In: 4th Annual Conference on Vision and Intelligent Systems (CVIS), Best Paper Award (2018)

    Google Scholar 

  38. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  39. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011)

    Google Scholar 

  40. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images, vol. 1, no. 4, p. 7. Technical report, University of Toronto (2009)

    Google Scholar 

  41. Ess, A., Leibe, B., Schindler, K., Van Gool, L.: A mobile vision system for robust multi-person tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE, June 2008

    Google Scholar 

  42. Wojek, C., Walk, S., Schiele, B.: Multi-cue onboard pedestrian detection (2009)

    Google Scholar 

  43. Enzweiler, M., Gavrila, D.M.: Monocular pedestrian detection: survey and experiments. IEEE Trans. Pattern Anal. Mach. Intell. (12), 2179–2195 (2008)

    Article  Google Scholar 

  44. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3354–3361. IEEE, June 2012

    Google Scholar 

  45. Zhang, S., Benenson, R., Schiele, B.: CityPersons: a diverse dataset for pedestrian detection. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, no. 2, p. 3, July 2017

    Google Scholar 

  46. Braun, M., Krebs, S., Flohr, F., Gavrila, D.M.: The EuroCity persons dataset: a novel benchmark for object detection. arXiv:1805.07193 (2018)

  47. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G., Beijbom, O.: nuScenes: a multimodal dataset for autonomous driving. arXiv:1903.11027 (2019)

  48. Hwang, S., Park, J., Kim, N., Choi, Y., So Kweon, I.: Multispectral pedestrian detection: benchmark dataset and baseline. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1037–1045 (2015)

    Google Scholar 

  49. Oksuz, K., Cam, B.C., Akbas, E., Kalkan, S.: Localization recall precision (LRP): a new performance metric for object detection. In: European Conference on Computer Vision (ECCV), vol. 6, July 2018

    Chapter  Google Scholar 

  50. Fattal, A.K., Karg, M., Scharfenberger, C., Adamy, J.: Saliency-guided region proposal network for CNN based object detection. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1–8. IEEE, Oct 2017

    Google Scholar 

  51. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  52. Kirillov, A., Girshick, R., He, K., Dollár, P.: Panoptic feature pyramid networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  53. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: European Conference on Computer Vision, pp. 483–499. Springer, Cham, Oct 2016

    Chapter  Google Scholar 

  54. Tung, H.Y., Tung, H.W., Yumer, E., Fragkiadaki, K.: Self-supervised learning of motion capture. In: Advances in Neural Information Processing Systems, pp. 5236–5246 (2017)

    Google Scholar 

  55. Pavlakos, G., Zhu, L., Zhou, X., Daniilidis, K.: Learning to estimate 3D human pose and shape from a single color image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 459–468 (2018)

    Google Scholar 

  56. Insafutdinov, E., Dosovitskiy, A.: Unsupervised learning of shape and pose with differentiable point clouds. In: Advances in Neural Information Processing Systems, pp. 2802–2812 (2018)

    Google Scholar 

  57. Held, D., Thrun, S., Savarese, S.: Learning to track at 100 FPS with deep regression networks. In European Conference on Computer Vision, pp. 749–765. Springer, Cham, Oct 2016

    Chapter  Google Scholar 

  58. Zhai, M., Chen, L., Mori, G., Javan Roshtkhari, M.: Deep learning of appearance models for online object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 0–0 (2018)

    Google Scholar 

  59. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: European Conference on Computer Vision, pp. 850–865. Springer, Cham, Oct 2016

    Google Scholar 

  60. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4293–4302 (2016)

    Google Scholar 

  61. Qi, Y., Zhang, S., Qin, L., Yao, H., Huang, Q., Lim, J., Yang, M.H.: Hedged deep tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4303–4311 (2016)

    Google Scholar 

  62. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1520–1528 (2015)

    Google Scholar 

  63. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  64. Li, Y., Qi, H., Dai, J., Ji, X., Wei, Y.: Fully convolutional instance-aware semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2359–2367 (2017)

    Google Scholar 

  65. Guo, Y., Liu, Y., Georgiou, T., Lew, M.S.: A review of semantic segmentation using deep neural networks. Int. J. Multimed. Inf. Retr. 7(2), 87–93 (2018)

    Article  Google Scholar 

  66. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  67. Maturana, D., Scherer, S.: Voxnet: a 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE, Sept 2015

    Google Scholar 

  68. Bojarski, M., Yeres, P., Choromanska, A., Choromanski, K., Firner, B., Jackel, L., Muller, U.: Explaining how a deep neural network trained with end-to-end learning steers a car. arXiv:1704.07911 (2017)

  69. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X.: End to end learning for self-driving cars. arXiv:1604.07316 (2016)

  70. Fernando, T., Denman, S., Sridharan, S., Fookes, C.: Going deeper: autonomous steering with neural memory networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 214–221 (2017)

    Google Scholar 

  71. Codevilla, F., Miiller, M., López, A., Koltun, V., Dosovitskiy, A.: End-to-end driving via conditional imitation learning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–9. IEEE, May 2018

    Google Scholar 

  72. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: learning affordance for direct perception in autonomous driving. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2722–2730 (2015)

    Google Scholar 

  73. Kuefler, A., Morton, J., Wheeler, T., Kochenderfer, M.: Imitating driver behavior with generative adversarial networks. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 204–211. IEEE, June 2017

    Google Scholar 

  74. Xu, H., Gao, Y., Yu, F., Darrell, T.: End-to-end learning of driving models from large-scale video datasets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2174–2182 (2017)

    Google Scholar 

  75. Morton, J., Wheeler, T.A., Kochenderfer, M.J.: Analysis of recurrent neural networks for probabilistic modeling of driver behavior. IEEE Trans. Intell. Transp. Syst. 18(5), 1289–1298 (2017)

    Article  Google Scholar 

  76. Ohn-Bar, E., Trivedi, M.M.: Looking at humans in the age of self-driving and highly automated vehicles. IEEE Trans. Intell. Veh. 1(1), 90–104 (2016)

    Article  Google Scholar 

  77. Reddy, B., Kim, Y.H., Yun, S., Seo, C., Jang, J.: Real-time driver drowsiness detection for embedded system using model compression of deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 121–128 (2017)

    Google Scholar 

  78. Lemley, J., Bazrafkan, S., Corcoran, P.: Deep learning for consumer devices and services: pushing the limits for machine learning, artificial intelligence, and computer vision. IEEE Consum. Electron. Mag. 6(2), 48–56 (2017)

    Article  Google Scholar 

  79. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  80. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S.: Deep learning for visual understanding: a review. Neurocomputing 187, 27–48 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Karg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karg, M., Scharfenberger, C. (2020). Deep Learning-Based Pedestrian Detection for Automated Driving: Achievements and Future Challenges. In: Pedrycz, W., Chen, SM. (eds) Development and Analysis of Deep Learning Architectures. Studies in Computational Intelligence, vol 867. Springer, Cham. https://doi.org/10.1007/978-3-030-31764-5_5

Download citation

Publish with us

Policies and ethics