Skip to main content

Biophysical Context of the Economy: Implications for Economics

  • Chapter
  • First Online:
Economics of a Crowded Planet
  • 188 Accesses

Abstract

This chapter outlines a biophysical context for the economy, describing how natural science understands the structure and dynamics of the natural world, as the context for the economy. The exponential increase in the material scale of the economy has set in motion a coevolution with Earth’s natural systems. The perspective upon the economy is from the outside looking in, so as to help the social-science reader understand how and why natural scientists perceive the relationship between human activity and natural processes, and to provide a rationale for an economics of a crowded planet. That rationale begins with the material scale of the economy as a bounding condition for individual preference. It is predicated critically upon certain propositions about individual motivations and norms under planetary limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Maturana and Varela (1998).

  2. 2.

    Maturana and Varela (1998, p. 75).

  3. 3.

    Maturana and Varela (1998, p. 96).

  4. 4.

    Rodman (1995, p. 251).

  5. 5.

    Georgescu-Roegen (1971, pp. 197–200).

  6. 6.

    Maturana and Varela (1998, p. 74).

  7. 7.

    See Maturana and Varela (1998, p. 74).

  8. 8.

    Maturana and Varela (1998, p. 40).

  9. 9.

    Georgescu-Roegen (1971, p. 343) makes a similar point: “…even equations and symbolic operations are man-made. By the very nature of its actor, every intellectual endeavor of man is and will never cease to be human.” This is not to take a sophistic position that everything is a figment of the imagination but rather to acknowledge that we as human beings construct a reality—just as any other animal does—to make sense of our world and to operate within it.

  10. 10.

    A neighboring unity may not necessarily be adjacent. Nerve cells connected by elongated ganglia may be spatially distant but still capable of direct interaction. They are thus structurally coupled, in the sense defined by Maturana and Varela.

  11. 11.

    Georgescu-Roegen (1971, p. 270).

  12. 12.

    Georgescu-Roegen (1971, p. 203).

  13. 13.

    Maturana and Varela (1998, p. 52).

  14. 14.

    Holling and Sanderson (1996, p. 59).

  15. 15.

    Lorenz (1963).

  16. 16.

    May (1973a, b, 1974).

  17. 17.

    R.M. May, pers. comm.

  18. 18.

    Georgescu-Roegen (1971, p. 42).

  19. 19.

    Simon (1974).

  20. 20.

    Eldredge and Salthe (1984). See also Salthe (2012) for a recent discussion of this kind of ‘compositional’ hierarchy.

  21. 21.

    Holland (1998, pp. 225–231).

  22. 22.

    For example, Crutchfield et al. (2003) show how emergent properties arise from applying genetic algorithms to confer ‘fitness’ upon populations of cellular automata within a model selective environment. The GAs provide the algorithmic variation upon which selection acts. When certain target conditions are reached, all automata in the model ‘relax’ into the same state.

  23. 23.

    Holland (1998, p. 232).

  24. 24.

    Berman (1981, p. 283).

  25. 25.

    Holland (1998, p. 242).

  26. 26.

    Maturana and Varela (1998, p. 135).

  27. 27.

    Georgescu-Roegen (1971, p. 111).

  28. 28.

    For example, Darwin (1859).

  29. 29.

    Georgescu-Roegen (1971, pp. 129–130).

  30. 30.

    Georgescu-Roegen (1971, p. 169).

  31. 31.

    Costanza and Folke (1996, p. 17).

  32. 32.

    Costanza et al. (1993) and Perrings et al. (1995).

  33. 33.

    Georgescu-Roegen (1971, p. 277).

  34. 34.

    Georgescu-Roegen (1971, p. 278).

  35. 35.

    Georgescu-Roegen (1971, p. 209) cited in Simpson (1949).

  36. 36.

    H. Poincaré (1934–1956) Oeuvres, 11 vols., vol. X cited in Georgescu-Roegen (1971, p. 169).

  37. 37.

    See, for example, Nelson and Winter (1982), Holland et al. (1986), Holland (1998), Crutchfield and Schuster (2003), and Beinhocker (2006).

  38. 38.

    Sterman and Sweeney (2002, p. 207).

  39. 39.

    E.g., Malhotra and Thorpe (1991).

  40. 40.

    Holling (1978).

  41. 41.

    Galbraith (1973, p. 251).

  42. 42.

    Galbraith (1973, p. 291).

  43. 43.

    Galbraith (1973, p. 290).

  44. 44.

    Galbraith (1973, p. 292).

  45. 45.

    Berman (1981).

  46. 46.

    http://www.materialflows.net/decoupling-material-use-and-economic-performance.

  47. 47.

    Estimates vary somewhat. A 2012 study by Kallmeyer et al. inferred the mass of Earth’s biota around 683 Gt. This may have been an overestimate, as a more recent study by Bar-On et al. (2018) places it around 550 Gt. For the present analysis, and for the models to follow in Chapters 3 and 4, 600 Gt is assumed.

  48. 48.

    Geider et al. (2001).

  49. 49.

    US National Aeronautics and Space Administration, http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html.

  50. 50.

    Emissions Database for Global Atmospheric Research (EDGAR), http://edgar.jrc.ec.europa.eu.

  51. 51.

    Bar-On et al. (2018).

References

  • Bar-On, Y.M., R. Phillips, and R. Milo. 2018. The Biomass Distribution on Earth. Proceedings of the National Academy of Sciences 115 (25): 6506–6511.

    Article  Google Scholar 

  • Beinhocker, E.D. 2006. The Origin of Wealth: Evolution, Complexity, and the Radical Remaking of Economics. Boston, MA: Harvard Business School Press.

    Google Scholar 

  • Berman, M. 1981. The Re-enchantment of the World. Ithaca: Cornell University Press.

    Google Scholar 

  • Costanza, R., and C. Folke. 1996. The Structure and Function of Ecological Systems. In Rights to Nature, ed. S.S. Hanna, C. Folke, and K.-G. Mäler, 242–256. Washington, DC: Island Press.

    Google Scholar 

  • Costanza, R., et al. 1993. Modeling Complex Ecological-Economic Systems: Toward an Evolutionary, Dynamic Understanding of People and Nature. BioScience 43: 545–555.

    Article  Google Scholar 

  • Crutchfield, J.P., and P. Schuster. 2003. Evolutionary Dynamics: Exploring the Interplay of Selection, Accident, Neutrality, and Function. Santa Fe Institute Studies on the Sciences of Complexity. Oxford: Oxford University Press.

    Google Scholar 

  • Crutchfield, J.P., M. Mitchell, and R. Das. 2003. Evolutionary Design of Collective Computation in Cellular Automata. In Evolutionary Dynamics: Exploring the Interplay of Selection, Accident, Neutrality, and Function, ed. J.P. Crutchfield and P. Schuster. Santa Fe Institute Studies on the Sciences of Complexity. Oxford: Oxford University Press.

    Google Scholar 

  • Darwin, C. 1859. The Origin of Species by Means of Natural Selection. London: John Murray.

    Google Scholar 

  • Eldredge, N., and S.N. Salthe. 1984. Hierarchy and Evolution. In Oxford Surveys in Evolutionary, vol. 1, ed. R. Dawkins and M. Ridley, 184–208. Oxford: Oxford University Press.

    Google Scholar 

  • Galbraith, J.K. 1973. Economics and the Public Purpose. Boston, MA: Houghton Mifflin.

    Google Scholar 

  • Geider, R.J., et al. 2001. Primary Productivity of Planet Earth: Biological Determinants and Physical Constraints in Terrestrial and Aquatic Habitats. Global Change Biology 7: 849–882.

    Article  Google Scholar 

  • Georgescu-Roegen, N. 1971. The Entropy Law and the Economic Process. Cambridge: Harvard University Press.

    Book  Google Scholar 

  • Holland, J.H. 1998. Emergence: From Chaos to Order. Reading, MA: Addison Wesley (Helix Books).

    Google Scholar 

  • Holland, J.H., et al. 1986. Induction: Processes of Inference, Learning and Discovery. Cambridge, MA: MIT Press.

    Google Scholar 

  • Holling, C.S. (ed.). 1978. Adaptive Environmental Assessment and Management. Chichester, UK: Wiley.

    Google Scholar 

  • Holling, C.S., and S. Sanderson. 1996. Dynamics of (Dis)harmony in Ecological Systems. In Rights to Nature, ed. S.S. Hanna, C. Folke, and K.-G. Mäler, 57–85. Washington, DC: Island Press.

    Google Scholar 

  • Kallmeyer, J., et al. 2012. Global Distribution of Microbial Abundance and Biomass in Subseafloor Sediment. Proceedings of the National Academy of Sciences 109 (40): 16213–16216.

    Article  Google Scholar 

  • Klein Goldewijk, K., and G. van Drecht. 2007. HYDE 3.1: Current and Historical Population and Land Cover. In Integrated Modelling of Global Environmental Change: An Overview of Image 2.4, ed. A. F. Bouwman, T. Kram, and K. Klein Goldewijk. Bilthoven. The Hague, The Netherlands: Netherlands Environmental Assessment Agency (MNP).

    Google Scholar 

  • Lorenz, E. 1963. Deterministic Nonperiodic Flow. Journal of Atmospheric Sciences 20: 130–141.

    Article  Google Scholar 

  • Malhotra, A., and R.S. Thorpe. 1991. Experimental Detection of Rapid Evolutionary Response in Natural Lizard Populations. Nature 353: 347–348.

    Article  Google Scholar 

  • Maturana, H.R., and F.J. Varela. 1998. The Tree of Knowledge: The Biological Roots of Human Understanding, Revised ed. Boston and London: Shambhala.

    Google Scholar 

  • May, R.M. 1973a. Time-Delay Versus Stability in Population Models with Two and Three Trophic Levels. Ecology 54 (2): 315–325.

    Article  Google Scholar 

  • May, R.M. 1973b. Qualitative Stability in Model Ecosystems. Ecology 54 (3): 638–641.

    Article  Google Scholar 

  • May, R.M. 1974. Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos. Science 186 (4164): 645–647.

    Article  Google Scholar 

  • Nelson, R.R., and S.G. Winter. 1982. An Evolutionary Theory of Economic Change. Cambridge, MA: Belknap Press.

    Google Scholar 

  • Perrings, C., et al. (eds.). 1995. Biodiversity Loss: Ecological and Economic Issues. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rodman, J. 1995. Four Forms of Ecological Consciousness Reconsidered. In The Deep Ecology Movement: An Introductory Anthology, ed. A. Drengson and Y. Inoue, 242–256. Berkeley, CA: North Atlantic Books.

    Google Scholar 

  • Salthe, S.N. 2012. Hierarchical Structures. Axiomathes 22: 355–383.

    Article  Google Scholar 

  • Simon, H.A. 1974. The Organization of Complex Systems. In Hierarchy Theory: The Challenge of Complex Systems, ed. H.H. Pattee, 3–27. New York: George Braziller.

    Google Scholar 

  • Simpson, G.G. 1949. The Meaning of Evolution. New Haven, CT: Yale University Press.

    Google Scholar 

  • Sterman, J.D., and L.B. Sweeney. 2002. Cloudy Skies: Assessing Public Understanding of Global Warming. System Dynamics Review 18 (2): 207–240.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murison Smith, F. (2019). Biophysical Context of the Economy: Implications for Economics. In: Economics of a Crowded Planet. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-31798-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31798-0_2

  • Published:

  • Publisher Name: Palgrave Macmillan, Cham

  • Print ISBN: 978-3-030-31797-3

  • Online ISBN: 978-3-030-31798-0

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics