Skip to main content

Sulfur Contamination in the Everglades, a Major Control on Mercury Methylation

  • Chapter
  • First Online:
Mercury and the Everglades. A Synthesis and Model for Complex Ecosystem Restoration

Abstract

In this chapter sulfur contamination of the Everglades and its role as a major control on methylmercury (MeHg) production is examined. Sulfate concentrations over large portions of the Everglades (60% of the ecosystem) are elevated or greatly elevated compared to background conditions of <1 mg/L. Land and water management practices in south Florida are the primary reason for the high levels of sulfate loading to the Everglades. Marshes in the northern Everglades that are highly enriched in sulfate have average concentrations of 60 mg/L, but water in canals in the Everglades Agricultural Area (EAA) contain the highest concentrations of sulfate averaging 60–70 mg/L. Studies that examined the mass balance of sulfur to the Everglades have determined that the primary sources of sulfate include: sulfur currently used in agriculture, and natural and legacy agricultural sulfur released by oxidation of organic soil within the EAA. The extensive loading of sulfate to the ecosystem increases microbial sulfate reduction, the dominant microbial process driving mercury methylation and MeHg production. The biogeochemical processes linking sulfate loading and MeHg production, however, are complex. MeHg production increases as sulfate levels rise from levels <1 mg/L up to about 20 mg/L. However, production of sulfide (a byproduct of microbial sulfate reduction) starts to inhibit MeHg production above 20 mg/L. Sulfate loading to canals in the EAA has impacted the northern Everglades the most, but the Everglades canal system can transport sulfate as far as Everglades National Park (ENP), 80 km further south. Plans to deliver more water to ENP as part of restoration may increase overall sulfate loads to the southern Everglades.

Reduction of sulfate loading should be a major goal of Everglades restoration because of the many negative effects of sulfate on the ecosystem. The ecosystem has been shown to respond quickly to reductions in sulfate loading, and strategies for reducing sulfate loading may produce positive outcomes for the Everglades in the near-term. Strategies for reducing sulfate loading will need to include: best management practices for agricultural use of sulfate, approaches to minimize soil oxidation in the EAA, and modifications to stormwater treatment areas to improve sulfate retention.

Author “George R. Aiken” is deceased at the time of publication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BCNP:

Big Cypress National Preserve

EAA:

Everglades Agricultural Area

ENP:

Everglades National Park

STA:

Stormwater Treatment Area

WCA:

Water Conservation Area

References

  • Adelman IR, Smith LL (1970) Effect of hydrogen sulfide on northern pike eggs and sac fry. Trans Am Fish Soc 99:501–508

    Article  CAS  Google Scholar 

  • Aiken GR, Gilmour CC, Krabbenhoft DP, Orem W (2011) Dissolved organic matter in the Florida Everglades: implications for ecosystem restoration. Crit Rev Environ Sci Technol 41:217–248

    Article  CAS  Google Scholar 

  • Allam AI, Hollis JP (1972) Sulfide inhibition of oxidases in rice roots. Phytopathology 62:634–639

    Article  CAS  Google Scholar 

  • Altschuler ZS, Schnepfe MM, Silber CC, Simon FO (1983) Sulfur diagenesis in Everglades peat and origin of pyrite in coal. Science 221:221–227

    Article  CAS  PubMed  Google Scholar 

  • Armstrong J, Armstrong W, Van der Putten WH (1996) Phragmites die-back: bud and root death, blockages within the aeration and vascular systems and the possible role of phytotoxins. New Phytol 133:399–414

    Article  CAS  Google Scholar 

  • Atkeson T, Axelrad D, Pollman C, Keeler G (2003) Integrating atmospheric mercury deposition and aquatic cycling in the Florida Everglades: an approach for conducting a total maximum daily load analysis for an atmospherically derived pollutant. Integrated summary. Final report. Florida Department of the Environment

    Google Scholar 

  • Atkeson TD, Pollman CD, Axelrad DM (2005) Chapter 26: Recent trends in Hg emissions, deposition, and biota in the Florida Everglades: a monitoring and modeling analysis. In: Pirrone N, Mahaffey K (eds) Dynamics of mercury pollution on regional and global scales: atmospheric processes, human exposure around the world. Springer, Norwell, MA, pp 637–656

    Google Scholar 

  • Axelrad DM, Lange T, Gabriel M, Atkeson TD, Pollman CD, Orem WH, Scheidt DJ, Kalla PI, Frederick PC, Gilmour CC (2008) Mercury and sulfur monitoring, research and environmental assessment in South Florida. South Florida environmental report, Chapter 3B, South Florida Water Management District, West Palm Beach, FL, 53 p

    Google Scholar 

  • Axelrad DM, Lange T, Atkeson TD, Gabriel MC (2009) Mercury and sulfur monitoring research and environmental assessment in South Florida. South Florida environmental report, Chapter 3B, South Florida Water Management District, West Palm Beach, FL, 32 p

    Google Scholar 

  • Bates AL, Spiker EC, Holmes CW (1998) Speciation and isotopic composition of sedimentary sulfur in the Everglades, Florida, USA. Chem Geol 146:155–170

    Article  CAS  Google Scholar 

  • Bates AL, Orem WH, Harvey JW, Spiker EC (2001) Geochemistry of sulfur in the Florida Everglades; 1994 through 1999. U.S. Geological Survey Open-File Report 01-0007, 54 p

    Google Scholar 

  • Bates AL, Orem WH, Harvey JW, Spiker EC (2002) Tracing sources of sulfur in the Florida Everglades. J Environ Qual 31:287–299

    Article  CAS  PubMed  Google Scholar 

  • Benoit JM, Gilmour CC, Mason RP (2001) The influence of sulfide on solid-phase mercury bioavailability for methylation by pure cultures of Desulfobulbous propionicus (1pr3). Environ Sci Technol 35:127–132

    Article  CAS  PubMed  Google Scholar 

  • Benoit JM, Gilmour CC, Heyes A, Mason RP, Miller CL (2003) Chapter 19: Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. In: Cai Y, Braids OC (eds) Biogeochemistry of environmentally important trace elements, ACS symposium series, vol 835, pp 262–297

    Google Scholar 

  • Berner RA (1980) Early diagenesis: a theoretical approach. Princeton University Press, Princeton, NJ, p 241

    Google Scholar 

  • Boswell CC, Friesen DK (1993) Elemental sulfur fertilizers and their use on crops and pastures. Fert Res 35:127–149

    Article  CAS  Google Scholar 

  • Bottcher AB, Izuno FT (1994) Everglades Agricultural Area (EAA)—water, soil, crop, and environmental management. University Press of Florida, Gainesville, FL, p 318

    Google Scholar 

  • Brown E, Crooks JW (1955) Chemical character of surface waters in the Central and Southern Florida Flood Control District. USGS Open File Report FL 55002, 13 p

    Google Scholar 

  • Casagrande DJ, Siefert K, Berschinski C, Sutton N (1977) Sulfur in peat-forming systems of the Okefenokee Swamp and Florida Everglades: origins of sulfur in coal. Geochim Cosmochim Acta 41:161–167

    Article  CAS  Google Scholar 

  • Casagrande DJ, Idowu G, Friedman A, Rickert P, Siefert K, Schlenz D (1979) H2S incorporation in coal precursors: origins of organic sulphur in coal. Nature 282:599–600

    Article  CAS  Google Scholar 

  • CH2MHILL (1978) Water quality studies in the Everglades Agricultural Area. Report submitted to the Florida Sugarcane League. Gainesville, FL, 136 p

    Google Scholar 

  • Chen M, Daroub SH, Lang TA, Diaz OA (2006) Specific conductance and ionic characteristics of farm canals in the Everglades Agricultural Area. J Environ Qual 35:141–150

    Article  PubMed  CAS  Google Scholar 

  • Childers DL, Doren RF, Jones R, Noe GB, Rugge M, Scinto LJ (2003) Decadal change in vegetation and soil phosphorus pattern across the Everglades landscape. J Environ Qual 32:344–362

    Article  CAS  PubMed  Google Scholar 

  • Corrales J, Naja GM, Dziuba C, Rivero RG, Orem W (2011) Sulfate threshold target to control methylmercury levels in wetland ecosystems. Sci Total Environ 409:2156–2162

    Article  CAS  PubMed  Google Scholar 

  • Davis SM (1994) Phosphorus inputs and vegetation sensitivity in the Everglades. In: Davis SM, Ogden JC (eds) Everglades: the ecosystem and its restoration. St. Lucie Press, Delray Beach, FL, pp 357–378

    Chapter  Google Scholar 

  • Dobermann A, Fairhurst TH (2000) Rice: nutrient disorders and nutrient management. Potash and Phosphate Institute, International Rice Research Institute, Singapore, Makati City, 254 p

    Google Scholar 

  • Drake HL, Aumen NG, Kuhner C, Wagner C, Griesshammer A, Schmittroth M (1996) Anaerobic microflora of Everglades sediments: effects of nutrients on population profiles and activities. Appl Environ Microbiol 62:486–493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dvonch JT, Graney JR, Keeler GJ, Stevens RK (1999) Use of elemental tracers to source apportion mercury in South Florida precipitation. Environ Sci Technol 33:4522–4527

    Article  CAS  Google Scholar 

  • Dvonch JT, Keeler GJ, Marsik FJ (2005) The influence of meteorological conditions on the wet deposition of mercury in Southern Florida. J Appl Meteorol 44:1421–1435

    Article  Google Scholar 

  • Fauque G, LeGall J, Barton LL (1991) Sulfate-reducing and sulfur-reducing bacteria. In: Shively JM, Barton LL (eds) Variations in autotrophic life. Academic, London, pp 271–337

    Google Scholar 

  • Flora MD, Rosendahl PC (1981) Specific conductance and ionic characteristics of the Shark River Slough, Everglades National Park, Florida. National Park Service, Homestead, FL, Report T-615, 55 p

    Google Scholar 

  • Flora MD, Rosendahl PC (1982a) The response of specific conductance to environmental conditions in the Everglades National Park, Florida. Water Air Soil Pollut 17:51–59

    Google Scholar 

  • Flora MD, Rosendahl PC (1982b) Historical changes in the conductivity and ionic characteristics of the source water for the Shark River Slough, Everglades National Park, Florida, U.S.A. Hydrobiologia 97:249–254

    Article  CAS  Google Scholar 

  • Florida Department of Health (2003) Florida fish consumption advisories. ftp://ftp.dep.state.fl.us/pub/lab/assessment/mercury/fishadvisory/pdf. Accessed 29 June 2018

  • Frederick PC, Spalding MG, Sepulveda MS, William G, Bouton S, Lynch H, Arrecis J, Lorezel S, Hoffman D (1997) Effects of environmental mercury exposure on reproduction, health and survival of wading birds in the Florida Everglades. Final report for the Florida Department of Environmental Protection. Tallahassee, FL, 206 p

    Google Scholar 

  • Gabriel MC, Axelrad DM, Lange T, Dirk L (2010) Mercury and sulfur monitoring, research and environmental assessment in South Florida. In: 2010 South Florida environmental report, Chapter 3B, South Florida Water Management District, West Palm Beach, FL, 49 p

    Google Scholar 

  • Gabriel MC, Howard N, Osborne TZ (2014) Fish mercury and surface water sulfate relationships in the Everglades protection area. Environ Manag 53:583–593. https://doi.org/10.1007/s00267-013-0224-4

    Article  Google Scholar 

  • Gao S, Tanji KK, Scardaci SC (2003) Incorporating straw may induce sulfide toxicity in paddy rice. Calif Agric 57:55–59

    Article  Google Scholar 

  • Garrett B, Ivanoff D (2008) Hydropattern restoration in Water Conservation Area 2A. Prepared for the Florida Department of Environmental Protection in Fulfillment of Permit # 0126704-001-GL (STA-2), by the STA Management Division, South Florida Water Management District, 113 p

    Google Scholar 

  • Gilmour C, Henry EA, Mitchell R (1992) Sulfate stimulation of mercury methylation in freshwater sediments. Environ Sci Technol 26:2287–2294

    Article  Google Scholar 

  • Gilmour C, Riedel GS, Ederington MC, Bell JT, Benoit JM, Gill GA, Stordal MC (1998) Methylmercury concentrations and production rates across a trophic gradient in the Northern Everglades. Biogeochemistry 40:327–345

    Article  CAS  Google Scholar 

  • Gilmour CC, Krabbenhoft D, Orem W, Aiken G (2004) Appendix 2B-1: influence of drying and rewetting on mercury and sulfur cycling in Everglades and STA soils. In: 2004 Everglades consolidated report, South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Gilmour C, Krabbenhoft D, Orem W, Aiken G, Roden E (2007a) Status report on ACME studies on the control of Hg methylation and bioaccumulation in the Everglades. In: 2007 South Florida environmental report, Appendix 3B-2, South Florida Water Management District, West Palm Beach, FL, 37 p

    Google Scholar 

  • Gilmour C, Orem W, Krabbenhoft D, Roy S, Mendelssohn I (2007b) Preliminary assessment of sulfur sources, trends and effects in the Everglades. In: 2007 South Florida environmental report, Appendix 3B-3, South Florida Water Management District, West Palm Beach, FL, 46 p

    Google Scholar 

  • Gilmour CC et al (2011) Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Appl Environ Microbiol 77:3938–3951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleason PJ (ed) (1974) Environments of South Florida: present and past. Miami Geological Society, Miami

    Google Scholar 

  • Guentzel JL, Landing WM, Gill GA, Pollman CD (1995) Atmospheric deposition of mercury in Florida: the fams project (1992–1994). Water Air Soil Pollut 80:393–402

    Article  CAS  Google Scholar 

  • Guentzel JL, Landing WM, Gill GA, Pollman CD (2001) Processes influencing rainfall deposition of mercury in Florida. Environ Sci Technol 35:863–873

    Article  CAS  PubMed  Google Scholar 

  • Gunderson LH, Snyder JR (1994) Fire patterns in the Southern Everglades. In: Davis SM, Ogden JC (eds) Everglades: the ecosystem and its restoration. St. Lucie Press, Delray Beach, FL, pp 291–305

    Google Scholar 

  • Haggerty GM, Bowman RS (2002) Sorption of chromate and other inorganic anions by organo-zeolite. Environ Sci Technol 28(3):452–458

    Article  Google Scholar 

  • Harvey JW, McCormick PV (2009) Groundwater’s significance to changing hydrology, water chemistry, and biological communities of a floodplain ecosystem, Everglades, South Florida, USA. Hydrogeol J 17:185–201

    Article  CAS  Google Scholar 

  • Harvey JW, Newlin JT, Krupa SL (2006) Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA. J Hydrol 320:400–420

    Article  Google Scholar 

  • Hawkesford MJ, DeKok LJ (2007) Sulfur in plants: an ecological perspective. Springer, Dordrecht, p 264

    Book  Google Scholar 

  • Heitmann T, Blodau C (2006) Oxidation and incorporation of hydrogen sulfide by dissolved organic matter. Chem Geol 235:12–20

    Article  CAS  Google Scholar 

  • Hotes S, Adema E, Grootjans A, Inoue T, Poschlod P (2005) Reed die-back related to increased sulfide concentration in a coastal mire in Eastern Hokkaido, Japan. Wetl Ecol Manag 13:83–91

    Article  CAS  Google Scholar 

  • James RT, McCormick P (2012) The sulfate budget of a shallow subtropical lake. Fundam Appl Limnol 181(4):253–269

    Article  CAS  Google Scholar 

  • James RT, Jones BL, Smith VH (1995) Historical trends in the Lake Okeechobee ecosystem II. Nutrient budgets. Arch Hydrobiol Suppl 107:25–47

    CAS  Google Scholar 

  • Jeremiason JD, Engstrom DR, Swain EB, Nater EA, Johnson BM, Almendinger JE, Monson BA, Kolka RK (2006) Sulfate addition increases methylmercury production in an experimental wetland. Environ Sci Technol 40:3800–3806

    Article  CAS  PubMed  Google Scholar 

  • Joyner BF (1974) Chemical and biological conditions of Lake Okeechobee, Florida, 1969–70. Open-File Report 71006. U.S. Geological Survey, Tallahassee, FL

    Google Scholar 

  • Jurczyk NU (1993) An ecological risk assessment of the impact of mercury contamination in the Florida Everglades. MS thesis, University of Florida, Gainesville, FL

    Google Scholar 

  • Katz BG, Plummer LN, Busenberg E, Revesz KM, Jones BF, Lee TM (1995) Chemical evolution of groundwater near a Sinkhole Lake, Northern Florida, 2. Chemical patterns, mass-transfer modeling, and rates of chemical reactions. Water Resour Res 31:1564–1584

    Google Scholar 

  • Keeler GJ, Marsik FJ, Al-Wali KI, Dvonch JT (2001) Appendix 7–6: status of the atmospheric dispersion and deposition model. In: 2001 Everglades consolidated report. South Florida Water Management District and Florida Department of Environmental Protection, West Palm Beach, FL

    Google Scholar 

  • Klein H, Hull JE (1978) Biscayne aquifer, Southeast Florida. U.S. Geological Survey, Water Resources Investigations Report 78-107, 52 p

    Google Scholar 

  • Koch MS, Mendelssohn IA (1989) Sulfide as a soil phytotoxin: differential responses in two marsh species. J Ecol 77:565–578

    Article  CAS  Google Scholar 

  • Koch MS, Reddy KR (1992) Distribution of soil and plant nutrients along a trophic gradient in the Florida Everglades. Soil Sci Soc Am J 56:1492–1499

    Article  Google Scholar 

  • Koch MS, Mendelssohn IA, McKee KL (1990) Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnol Oceanogr 35:399–408

    Article  CAS  Google Scholar 

  • Lamers LM, Tomassen HM, Roelofs JM (1998) Sulfate-induced eutrophication and phytotoxicity in freshwater wetlands. Environ Sci Technol 32:199–205

    Article  CAS  Google Scholar 

  • Landing W (2015) Peer-review report on the Everglades Agricultural Area regional sulfur mass balance: technical webinar. In: 2015 South Florida environmental report, Appendix 3B-2, South Florida Water Management District, West Palm Beach, FL, 44 p

    Google Scholar 

  • Li S, Mendelssohn IA, Chen H, Orem WH (2009) Does sulfate enrichment promote Typha domingensis (cattail) expansion into the Cladium jamaicence (sawgrass)-dominated Florida Everglades? Freshw Biol 54:1909–1823

    Article  CAS  Google Scholar 

  • Lissner J, Mendelssohn IA, Lorenzen B, Brix H, McKee KL, Miao S (2003) Interactive effects of redox intensity and phosphate availability on growth and nutrient relations of Cladium jamaicense (Cyperaceae). Am J Bot 90:736–748

    Article  CAS  PubMed  Google Scholar 

  • Lockwood JL, Ross MS, Sah JP (2003) Smoke on the water: the interplay of fire and water flow on Everglades restoration. Front Ecol Environ 1(9):462–468

    Article  Google Scholar 

  • Love SK (1955) Quality of ground and surface waters. In: Parker G, Ferguson GE, Love SK, others (eds) Water resources of Southeastern Florida with special reference to the geology and ground water of the Miami area, U.S. Geological Survey Water-Supply Paper 1255, Washington, DC, pp 727–833

    Google Scholar 

  • Maglio M, Krabbenhoft D, Tate M, DeWild J, Ogorek J, Thompson C, Aiken G, Orem W, Kline J, Castro J, Gilmour C (2015) Drivers of geospatial and temporal variability in the distribution of mercury and methylmercury in Everglades National Park. GEER meeting, Coral Springs, FL, April 2015. Program and Abstracts

    Google Scholar 

  • Marvin-DiPasquale M, Windham-Myers L, Agee JL, Kakouros E, Kieu le H, Fleck JA, Alpers CN, Stricker CA (2014) Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA. Sci Total Environ 484:288–299

    Article  CAS  PubMed  Google Scholar 

  • McCormick PV, Harvey JW (2011) Influence of changing water sources and mineral chemistry on the Everglades ecosystem. Crit Rev Environ Sci Technol 41(S1):28–63

    Article  CAS  Google Scholar 

  • McCormick PV, James RT (2008) Lake Okeechobee: regional sulfate source, sink, or reservoir? Presented at the 19th Annual Florida Lake Management Society Conference and 2008 NALMS Southeast Regional Conference, June 3, 2008

    Google Scholar 

  • McCormick PV, Rawlick PS, Lurding K, Smith EP, Sklar FH (1996) Periphyton–water quality relationships along a nutrient gradient in the Florida Everglades. J N Am Benthol Soc 15:433–449

    Article  Google Scholar 

  • McCormick PV, Newman S, Miao S, Gawlik DE, Marley D, Reddy KR, Fontaine TD (2002) Effects of anthropogenic phosphorus inputs on the Everglades. In: Porter JW, Porter KG (eds) The Everglades, Florida Bay, and coral reefs of the Florida keys, an ecosystem sourcebook. CRC, Boca Raton, FL, pp 83–126

    Google Scholar 

  • McCoy CW, Nigg HN, Timmer LW, Futch SH (2003) Use of pesticides in citrus IPM. In: Timmer LW (ed) 2003 Florida citrus pest management guide. University of Florida Cooperative Extension Service, Institute of Food and Agricultural Services

    Google Scholar 

  • Mendelssohn IA, McKee KL (1988) Spartina alterniflora dieback in Louisiana: time course investigation of soil waterlogging effects. J Ecol 76:509–521

    Article  Google Scholar 

  • Meyer B (1977) Sulfur, energy, and environment. Elsevier, Amsterdam, p 457

    Google Scholar 

  • Miao S, Newman S, Sklar FH (2000) Effects of habitat nutrients and seed sources on growth and expansion of Typha domingensis. Aquat Bot 68:297–311

    Article  Google Scholar 

  • Michaud JP, Grant AKJ (2003) Sub-lethal effects of a copper sulfate fungicide on development and reproduction in three coccinellid species. J Insect Sci 3:16–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller WL (1988) Description and evaluation of the effects of urban and agricultural development on the surficial aquifer system, Palm Beach County, Florida. U.S. Geological Survey Water-Resources Investigations Report 88-4056

    Google Scholar 

  • Mitchell MJ, Mayer B, Bailey SW et al (2001) Use of stable isotope ratios for evaluating sulfur sources and losses at the Hubbard Brook Experimental Forest. In: Proceedings of acid rain 2000, Japan. Water Air Soil Pollut 130:75–86

    Article  CAS  Google Scholar 

  • Mitchell CPJ, Branfireun BA, Kolka RK (2008) Assessing sulfate and carbon controls on net methylmercury production in peatlands: an in situ mesocosm approach. Appl Geochem 23:503–518

    Article  CAS  Google Scholar 

  • Morgan MD (1990) Streams in the New Jersey pinelands directly reflect changes in atmospheric deposition chemistry. J Environ Qual 19(2):296

    Article  CAS  Google Scholar 

  • Morgan MD, Good RE (1988) Stream chemistry in the New Jersey pinelands: the influence of precipitation and watershed disturbance. Water Resourc Res 24:1091–1100

    Article  CAS  Google Scholar 

  • Morse JW, Luther GW III (1999) Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim Cosmochim Acta 63:3373–3378

    Article  CAS  Google Scholar 

  • Munthe J, Bodaly R, Branfireun B, Driscoll C, Gilmour C, Harris R, Horvat M, Lucotte M, Malm O (2007) Recovery of mercury-contaminated fisheries. Ambio 36:33–44

    Article  CAS  PubMed  Google Scholar 

  • NADP, National Atmospheric Deposition Program (2008) National Atmospheric Deposition Program data, site FL11, annual data summaries. http://nadp.sws.uiuc.edu/default.html

  • National Research Council (1979) Hydrogen sulfide. University Park Press, Baltimore, MD

    Google Scholar 

  • Ogden JC, Robertson WB, Davis GE, Schmidt TW (1974) Pesticides, polychlorinated biphenyls and heavy metals in upper food chain levels, Everglades National Park and vicinity. U.S. Department of the Interior, National Technical Information Service, No. PB-235 359

    Google Scholar 

  • Orem WH (2004) Impacts of sulfate contamination on the Florida Everglades ecosystem. USGS Fact Sheet FS 109-03, 4 p

    Google Scholar 

  • Orem W (2007) Sulfur contamination in the Florida Everglades: initial examination of mitigation strategies. U.S. Geological Survey Open-File Report 2007-1374, 53 pp. http://sofia.usgs.gov/publications/ofr/2007-1374/

  • Orem WH, Lerch HE, Rawlik P (1997) Descriptive geochemistry of surface and pore water from USGS 1994 and 1995 coring sites in South Florida wetlands. USGS Open-File Report 97-454, 70 p

    Google Scholar 

  • Orem W, Gilmour C, Axelrad D, Krabbenhoft D, Scheidt D, Kalla P, McCormick P, Gabriel M, Aiken G (2011) Sulfur in the South Florida ecosystem: distribution, sources, biogeochemistry, impacts, and management for restoration. Rev Environ Sci Technol 41(S1):249–288

    Article  CAS  Google Scholar 

  • Orem W, Newman S, Osborne TZ, Reddy KR (2014) Projecting changes in Everglades soil biogeochemistry for carbon and other key elements, to possible 2060 climate and hydrologic scenarios. Environ Manag 55:776–798

    Article  Google Scholar 

  • Orem WH, Fitz C, Krabbenhoft D, Tate M, Gilmour C, Shafer M (2015) Modeling sulfate transport and distribution and methylmercury production associated with aquifer storage and recovery implementation in the everglades protection area. Sustain Water Qual Ecol 3–4:33–46

    Google Scholar 

  • Parker GG, Ferguson GE, Love SK et al (1955) Water resources of Southeastern Florida—with special reference to the geology and ground water of the interior Miami area. U.S. Geological Survey Water-Supply Paper 1255, pp 1–4, 157

    Google Scholar 

  • Payne GG, Xue SK, Weaver KC (2009) Chapter 3A: Status of water quality in the Everglades protection area. In: 2009 South Florida environmental report—volume I. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Perry W (2008) Everglades restoration and water quality challenges in South Florida. Ecotoxicology 17:569–578

    Article  PubMed  Google Scholar 

  • Pfeuffer R, Rand G (2004) South Florida ambient pesticide monitoring Program. Ecotoxicology 13:195–205

    Article  CAS  PubMed  Google Scholar 

  • Pietro K, Bearzotti R, Germain G, Iricanin N (2009) Chapter 5: STA performance, compliance and optimization. In: 2009 South Florida Environmental Report, vol I. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Pollman CD (2012) Modeling sulfate and Gambusia mercury relationships in the Everglades. Final reported submitted to the Florida Department of Environmental Protection. Tallahassee, FL. Aqua Lux Lucis, Gainesville, FL

    Google Scholar 

  • Pollman CD (2014) Mercury cycling and trophic state in aquatic ecosystems: implications from structural equation modeling. Sci Total Environ 499:62–73

    Article  CAS  PubMed  Google Scholar 

  • Pollman CD, Canfield DE Jr (1991) Florida. In: Charles DF (ed) Acid deposition and aquatic ecosystems: regional case studies. Springer, New York, pp 367–416

    Chapter  Google Scholar 

  • Poulin BA, Ryan JN, Nagy KL, Stubbins A, Dittmar T, Orem W, Krabbenhoft DP, Aiken GR (2017) Spatial dependence of reduced sulfur in everglades dissolved organic matter controlled by sulfate enrichment. Environ Sci Technol 51:3630–3639

    Article  CAS  PubMed  Google Scholar 

  • Price RM, Swart PK (2006) Geochemical indicators of groundwater recharge in the surficial aquifer system, Everglades National Park, Florida, USA. GSA Spec Pap 404:251–266. https://doi.org/10.1130/2006.2404(21)

    Article  Google Scholar 

  • Priyantha N, Perera S (2000) Water Resour Manag 14(6):417–434

    Article  Google Scholar 

  • Radell MJ, Katz BG (1991) Major-ion and selected trace metal chemistry of the Biscayne Aquifer, Southeast Florida. U.S. Geological Survey Water Resources Investigations Report 91-4009. Tallahassee, FL, 18 p

    Google Scholar 

  • Reddy KR, Kadlec RH, Chimney MJ (2006) The Everglades nutrient removal project. Ecol Eng 27:265–267

    Article  Google Scholar 

  • Restoration, Coordination and Verification (2007) Comprehensive everglades restoration plan system-wide performance measures

    Google Scholar 

  • Rice RW, Gilbert RA, Lentini RS (2006) Nutritional requirements for florida sugarcane. Document SS-AGR-228 of the Agronomy Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Online at http://edis.ifas.ufl.edu/SC028

  • Richardson CJ, Ferrell GM, Vaithiyanathan P (1999) Nutrient effects on stand structure, resorption efficiency, and secondary compounds in Everglades sawgrass. Ecology 80:2182–2192

    Article  Google Scholar 

  • Rumbold DG, Lange TR, Axelrad DM, Atkeson TD (2008) Ecological risk of methylmercury in Everglades National Park, Florida, USA. Ecotoxicology 17(7):632–641. https://doi.org/10.1007/s10646-008-0234-9

    Article  CAS  PubMed  Google Scholar 

  • Scheidt DJ, Kalla PI (2007) Everglades ecosystem assessment: water management and quality, eutrophication, mercury contamination, soils and habitat: monitoring for adaptive management: a R-EMAP status report. USEPA Region 4. EPA 904-R-07-001. Athens, GA, 98 p. http://www.epa.gov/Region4/sesd/reports/epa904r07001/epa904r07001.pdf

  • Scheidt D, Stober J, Jones R, Thornton K (2000) South Florida ecosystem assessment: water management, soil loss, eutrophication and habitat. United States Environmental Protection Agency Report 904-R-00-003. Atlanta, GA, 46 p. http://www.epa.gov/region4/sesd/reports/epa904r00003/epa904r00003.pdf

  • Scherer MM, Richter S, Valentine RL, Alvarez PJJ (2008) Chemistry and microbiology of permeable reactive barriers for groundwater clean up. Crit Rev Microbiol 26(4):221–264

    Article  Google Scholar 

  • Schueneman TJ (2000) Characterization of sulfur sources in the EAA. Soil Crop Sci Soc Fla Proc 60:20–22

    Google Scholar 

  • Schueneman TJ, Sanchez CA (1994) Vegetable production in the EAA. In: Bottcher AB, Izuno FT (eds) Everglades Agricultural Area (EAA): water, soil, crop, and environmental management. University Press of Florida, Gainesville, FL, pp 238–277

    Google Scholar 

  • SFWMD (2006) Natural system model (NSM) version 4.5. https://my.sfwmd.gov/pls/portal/docs/page/pg_grp_sfwmd_hesm/portlet_nsm/portlet_subtab_nsm_documents/tab1354050/nsm45.pdf

  • SFWMD (2009) DBHYDRO. South Florida Water Management District, West Palm Beach, FL. http://my.sfwmd.gov/dbhydroplsql/show_dbkey_info.main_menu

  • Shen Y, Buick R (2004) The antiquity of microbial sulfate reduction. Earth Sci Rev 64:243–272

    Article  CAS  Google Scholar 

  • Smith LL Jr, Oseid DM, Adelman LR, Broderius SJ (1976) Effect of hydrogen sulfide on fish and invertebrates, part I. Acute and Chronic Toxicity Studies, United States Environmental Protection Agency, Washington D.C., USA (1976) EPA-600/3-76-062a

    Google Scholar 

  • Smolders AJP, Nijboer RC, Roelofs JGM (1995) Prevention of sulfide accumulation and phosphate mobilization by the addition of iron(II) chloride to a reduced sediment: an enclosure experiment. Freshw Biol 34:559–568

    Article  CAS  Google Scholar 

  • Smolders AJP, Lamers LPM, den Hartog C, Roelofs JGM (2003) Mechanisms involved in the decline of Stratiotes aloides L. in The Netherlands: sulphate as a key variable. Hydrobiologia 506–509:603–610

    Article  Google Scholar 

  • Smolders AJP, Lamers LPM, Lucassen ECHET, Van der Velde G, Roelofs JGM (2006) Internal eutrophication: how it works and what to do about it—a review. Chem Ecol 22:93–111

    Article  CAS  Google Scholar 

  • Stober J, Scheidt D, Jones R, Thornton K, Ambrose R, France D (1996) South Florida ecosystem assessment. Monitoring for adaptive management: implications for ecosystem restoration. Interim report. United States Environmental Protection Agency EPA-904-R-96-008

    Google Scholar 

  • Stober J, Thornton K, Jones R, Richards J, Ivey C, Welch R, Madden M, Trexler J, Gaiser E, Scheidt D, Rathbun S (2001) South Florida ecosystem assessment: phase I/II summary report. Everglades stressor interactions: hydropatterns, eutrophication, habitat alteration, and mercury contamination. EPA 904-R-01-002. USEPA Region 4 Science and Ecosystem Support Division. Athens, GA

    Google Scholar 

  • Tabatabai MA (1984) Importance of sulphur in crop production. Biogeochemistry 1:45–62

    Article  CAS  Google Scholar 

  • Thurston RV, Russo RC, Fetterolf CM Jr, Edsall TA, Barber YM Jr (1979) A review of the EPA Red Book: quality criteria for water. Water Quality Section, American Fisheries Society, Bethesda, MD

    Google Scholar 

  • Ullman WJ, Aller RC (1982) Diffusion coefficients in nearshore marine sediments limnol. Oceanography 27:552–556

    CAS  Google Scholar 

  • USEPA (1976) Quality criteria for water. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (2006) Clean Air Status and Trends Network (CASTNET) 2005 Annual Report. U.S. Environmental Protection Agency, Office of Air and Radiation, Clean Air Markets Division, Washington, DC, 48 pp. plus references and appendices. http://www.epa.gov/castnet

  • Vairavamurthy MA, Schoonen MAA, Eglinton TI, Luther GW III, Manowitz B (1995) Geochemical transformations of sedimentary sulfur, American Chemical Society Symposium Series 612. American Chemical Society, Washington, DC

    Google Scholar 

  • Van der Welle MEW, Cuppens M, Lamers LPM, Roelofs JGM (2006) Detoxifying toxicants: interactions between sulfide and iron toxicity in freshwater wetlands. Environ Toxicol Chem 25:1592–1597

    Article  PubMed  Google Scholar 

  • Vismann B (1996) Sulfide species and total sulfide toxicity in the shrimp Crangon crangon. J Exp Mar Biol Ecol 204:141–154

    Article  CAS  Google Scholar 

  • Wang F, Chapman PM (1999) Biological implications of sulfide in sediment—a review focusing on sediment toxicity. Environ Toxicol Chem 18:2526–2532

    CAS  Google Scholar 

  • Wang H, Waldon M, Meselhe E, Arceneaux J, Chen C, Harwell M (2009) Surface water sulfate dynamics in the Northern Florida Everglades. J Environ Qual 38:734–741

    Article  CAS  PubMed  Google Scholar 

  • William O, Gilmour C, Axelrad D, Krabbenhoft D, Scheidt D, Kalla P, McCormick P, Gabriel M, Aiken G (2011) Sulfur in the South Florida ecosystem: distribution, sources, biogeochemistry, impacts, and management for restoration. Crit Rev Environ Sci Technol 41(Supp 1):249–288

    Google Scholar 

  • Wu Y, Sklar FH, Gopu K, Rutchey K (1996) Fire simulations in the Everglades landscape using parallel programming. Ecol Model 93:113–124

    Article  Google Scholar 

  • Ye R, Wright AL, Orem WH, McCray JM (2010) Sulfur distribution and transformations in everglades agricultural area soil as influenced by sulfur amendment. Soil Sci 175(6):263–269

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the USGS Priority Ecosystems Studies for South Florida Program—Nick Aumen, Program Executive. Any use of trade, firm, or product names in this report is for descriptive purposes only and does not imply endorsement by the USGS or the U.S. Government. All figures and tables used are original creations for this chapter. Thanks to Matthew Varonka, Anne Bates, Tiffani Schell, Cynthia Gilmour, John DeWild, and many others who contributed to the USGS Aquatic Cycling of Mercury in the Everglades (ACME) Project over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Orem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orem, W.H., Krabbenhoft, D.P., Poulin, B.A., Aiken, G.R. (2019). Sulfur Contamination in the Everglades, a Major Control on Mercury Methylation. In: Rumbold, D., Pollman, C., Axelrad, D. (eds) Mercury and the Everglades. A Synthesis and Model for Complex Ecosystem Restoration. Springer, Cham. https://doi.org/10.1007/978-3-030-32057-7_2

Download citation

Publish with us

Policies and ethics