Skip to main content

Biometric Measurement in Software Engineering

  • Chapter
  • First Online:
Contemporary Empirical Methods in Software Engineering
  • 1862 Accesses

Abstract

Biometric sensor technology provides new opportunities to measure physiological changes in the human body that can be linked to various psychological processes. In software engineering, these biometric measurements can be used to gain insights on fundamental cognitive and emotional processes of software developers while they are working. In addition, biometric measures may be used to provide better and more instantaneous tool support for developers, for instance, by preventing defects from being introduced in the code or supporting focused work. In this chapter, we motivate the use of biometric measurements, introduce common types of biometric sensors and measures, discuss how to choose the right set of them and considerations for analyzing the collected data. We also discuss work in the area of software engineering and recommend further reading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreassi JL (2007) Psychophysiology: human behavior and physiological response. Lawrence Erlbaum Associates, Mahwah

    Google Scholar 

  • Anthony L, Carrington P, Chu P, Kidd C, Lai J, Sears A (2011) Gesture dynamics: features sensitive to task difficulty and correlated with physiological sensors. Stress 1418(360):312–316

    Google Scholar 

  • Ayres P (2001) Systematic mathematical errors and cognitive load. Contemp Educ Psychol 26(2):227–248

    Article  Google Scholar 

  • Bailey BP, Konstan JA, Carlis JV (2001) The effects of interruptions on task performance, annoyance, and anxiety in the user interface. In: Proceedings of interact, vol 1, pp 593–601

    Google Scholar 

  • Bednarik R, Tukiainen M (2006) An eye-tracking methodology for characterizing program comprehension processes. In: Proceedings of the symposium on eye tracking research and applications, pp 125–132

    Google Scholar 

  • Begel A, Vrzakova H (2018) Eye movements in code review. In: Proceedings of the workshop on eye movements in programming (EMIP ’18). ACM, New York, pp 5:1–5:5. https://doi.org/10.1145/3216723.3216727

  • Brookings JB, Wilson GF, Swain CR (1996) Psychophysiological responses to changes in workload during simulated air traffic control. Biol Psychol Psychophysiol Workload 42(3):361–377

    Article  Google Scholar 

  • Busjahn T, Bednarik R, Begel A, Crosby M, Paterson JH, Schulte C, Sharif B, Tamm S (2015) Eye movements in code reading: relaxing the linear order. In: 2015 IEEE 23rd international conference on program comprehension, pp 255–265. https://doi.org/10.1109/ICPC.2015.36

  • Cacioppo J, Tassinary LG, Berntson GG (2007) The handbook of psychophysiology. Cambridge University, Cambridge

    Google Scholar 

  • Carniglia E, Caputi M, Manfredi V, Zambarbieri D, Pessa E (2012) The influence of emotional picture thematic content on exploratory eye movements. J Eye Mov Res 5(4):1–9

    Google Scholar 

  • Chandrika KR, Amudha J, Sudarsan SD (2017) Recognizing eye tracking traits for source code review. In: 2017 22nd IEEE international conference on emerging technologies and factory automation (ETFA), pp 1–8. https://doi.org/10.1109/ETFA.2017.8247637

  • Chanel G, Rebetez C, Bétrancourt M, Pun T (2008) Boredom, engagement and anxiety as indicators for adaptation to difficulty in games. In: Proceedings of the 12th international conference on entertainment and media in the Ubiquitous Era, pp 13–17. https://doi.org/10.1145/1457199.1457203. http://doi.acm.org/10.1145/1457199.1457203

  • Crk I, Kluthe T, Stefik A (2015) Understanding programming expertise: an empirical study of phasic brain wave changes. ACM Trans Comput-Hum Interact 23(1):2:1–2:29. https://doi.org/10.1145/2829945

  • Crosby ME, Stelovsky J (1990) How do we read algorithms? A case study. Computer 23(1):25–35. https://doi.org/10.1109/2.48797

    Article  Google Scholar 

  • Czerwinski M, Cutrell E, Horvitz E (2000) Instant messaging: effects of relevance and timing. In: People and computers XIV: proceedings of HCI, British Computer Society, vol 2, pp 71–76

    Google Scholar 

  • Das R, Chatterjee D, Das D, Sinharay A, Sinha A (2014) Cognitive load measurement—a methodology to compare low cost commercial EEG devices. In: 2014 International conference on advances in computing, communications and informatics (ICACCI), pp 1188–1194. https://doi.org/10.1109/ICACCI.2014.6968528

  • Doehring DG (1957) The relation between manifest anxiety and rate of eyeblink in a stress situation. Technical report, Central Institute for the Deaf, St Louis

    Google Scholar 

  • Drachen A, Nacke LE, Yannakakis G, Pedersen AL (2010) Correlation between heart rate, electrodermal activity and player experience in first-person shooter games. In: Proceedings of the 5th symposium on video games, pp 49–54

    Google Scholar 

  • Fakhoury S, Ma Y, Arnaoudova V, Adesope O (2018) The effect of poor source code lexicon and readability on developers’ cognitive load. In: Proceedings of the 26th conference on program comprehension (ICPC ’18). ACM, New York, pp 286–296. https://doi.org/10.1145/3196321.3196347

    Google Scholar 

  • Floyd B, Santander T, Weimer W (2017) Decoding the representation of code in the brain: an fMRI study of code review and expertise. In: 2017 IEEE/ACM 39th international conference on software engineering (ICSE), pp 175–186. https://doi.org/10.1109/ICSE.2017.24

  • Freeman GL (1940) A method of inducing frustration in human subjects and its influence upon palmar skin resistance. Am J Psychol 53(1):117–120

    Article  Google Scholar 

  • Fritz T, Müller SC (2016) Leveraging biometric data to boost software developer productivity. In: 2016 IEEE 23rd international conference on software analysis, evolution, and reengineering (SANER), vol 5, pp 66–77

    Google Scholar 

  • Fritz T, Begel A, Müller SC, Yigit-Elliott S, Züger M (2014) Using psycho-physiological measures to assess task difficulty in software development. In: Proceedings of the 36th international conference on software engineering (ACM, ICSE 2014), pp 402–413. https://doi.org/10.1145/2568225.2568266

  • Girardi D, Lanubile F, Novielli N (2017) Emotion detection using noninvasive low cost sensors. In: 2017 Seventh international conference on affective computing and intelligent interaction (ACII), pp 125–130. https://doi.org/10.1109/ACII.2017.8273589

  • Graziotin D, Fagerholm F, Wang X, Abrahamsson P (2018) What happens when software developers are (un)happy. J Syst Softw 140:32–47. https://doi.org/10.1016/j.jss.2018.02.041

    Article  Google Scholar 

  • Haag A, Goronzy S, Schaich P, Williams J (2004) Emotion recognition using bio-sensors: first steps towards an automatic system. Affect Dialogue Syst Lect Notes Comput Sci 3068:36–48

    Article  Google Scholar 

  • Haapalainen E, Kim S, Forlizzi JF, Dey AK (2010) Psycho-physiological measures for assessing cognitive load. In: Proceedings of the 12th international conference on ubiquitous computing, pp 301–310

    Google Scholar 

  • Ikehara CS, Crosby ME (2005) Assessing cognitive load with physiological sensors. In: Proceedings of the 38th Hawaii international conference on system sciences, p 295a

    Google Scholar 

  • Ikutani Y, Uwano H (2014) Brain activity measurement during program comprehension with NIRS. In: Proceedings of the international conference on software engineering, artificial intelligence, networking and parallel/distributed computing, pp 1–6

    Google Scholar 

  • Iqbal ST, Zheng XS, Bailey BP (2004) Task-evoked pupillary response to mental workload in human-computer interaction. In: CHI ’04 extended abstracts on human factors in computing systems, pp 1477–1480

    Google Scholar 

  • Jbara A, Feitelson DG (2017) How programmers read regular code: a controlled experiment using eye tracking. Empir Softw Eng 22(3):1440–1477. https://doi.org/10.1007/s10664-016-9477-x

    Article  Google Scholar 

  • Kapoor A, Burleson W, Picard RW (2007) Automatic prediction of frustration. Int J Hum Comput Stud 65(8):724–736

    Article  Google Scholar 

  • Kevic K, Walters BM, Shaffer TR, Sharif B, Shepherd DC, Fritz T (2015) Tracing software developers’ eyes and interactions for change tasks. In: Proceedings of the 2015 10th joint meeting on foundations of software engineering (ESEC/FSE 2015). ACM, New York, pp 202–213. https://doi.org/10.1145/2786805.2786864

    Google Scholar 

  • Kosti MV, Georgiadis K, Adamos DA, Laskaris N, Spinellis D, Angelis L (2018) Towards an affordable brain computer interface for the assessment of programmers’ mental workload. Int J Hum Comput Stud 115:52–66. https://doi.org/10.1016/j.ijhcs.2018.03.002

    Article  Google Scholar 

  • Kramer AF (1991) Physiological metrics of mental workload: a review of recent progress. In: Multiple-task performance, pp 279–328

    Google Scholar 

  • Kuznetsov NA, Shockley KD, Richardson MJ, Riley MA (2011) Effect of precision aiming on respiration and postural-respiratory synergy. Neurosci Lett 502(1):13–17

    Article  Google Scholar 

  • Levandovski R, Sasso E, Hidalgo MP (2013) Chronotype: a review of the advances, limits and applicability of the main instruments used in the literature to assess human phenotype. Trends Psychiatry Psychother 35(1):3–11

    Article  Google Scholar 

  • Li M, Lu BL (2009) Emotion classification based on gamma-band EEG. In: Conference proceedings of the annual international conference of the IEEE engineering in medicine and biology society, pp 1323–1326

    Google Scholar 

  • Lin YP, Wang CH, Jung TP, Wu TL, Jeng SK, Duann JR, Chen JH (2010) EEG-based emotion recognition in music listening. IEEE Trans Biomed Eng 57(7):1798–1806. https://doi.org/10.1109/TBME.2010.2048568

    Article  Google Scholar 

  • Mark G, Gudith D, Klocke U (2008) The cost of interrupted work: more speed and stress. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, New York, pp 107–110

    Google Scholar 

  • McCraty R, Tomasino D (2006) Stress in health and diseases. In: Chap emotional stress, positive emotions, and psychophysiological coherence. Wiley-VCH, New York

    Google Scholar 

  • McDuff D, Karlson A, Kapoor A, Roseway A, Czerwinski M (2012) AffectAura: an intelligent system for emotional memory. In: Proceedings of the 2012 ACM annual conference on human factors in computing systems, pp 849–858

    Google Scholar 

  • Muldner K, Burleson W, VanLehn K (2010) “Yes!”: using tutor and sensor data to predict moments of delight during instructional activities. In: Proceedings of the 18th international conference on user modeling, adaptation, and personalization, pp 159–170

    Google Scholar 

  • Müller SC, Fritz T (2015) Stuck and frustrated or in flow and happy: sensing developers’ emotions and progress. In: 2015 IEEE/ACM 37th IEEE international conference on software engineering, vol 1, pp 688–699. https://doi.org/10.1109/ICSE.2015.334

  • Müller SC, Fritz T (2016) Using (bio)metrics to predict code quality online. In: 2016 IEEE/ACM 38th international conference on software engineering (ICSE), pp 452–463. https://doi.org/10.1145/2884781.2884803

  • Nakagawa T, Kamei Y, Uwano H, Monden A, Matsumoto K, German DM (2014) Quantifying programmers’ mental workload during program comprehension based on cerebral blood flow measurement: a controlled experiment. In: Companion proceedings of international conference on software engineering

    Google Scholar 

  • Peitek N, Siegmund J, Apel S, Kästner C, Parnin C, Bethmann A, Leich T, Saake G, Brechmann A (2018) A look into programmers’ heads. IEEE Trans Softw Eng. https://doi.org/10.1109/TSE.2018.2863303

  • Peper E, Harvey R, Lin IM, Tylova H, Moss D (2007) Is there more to blood volume pulse than heart rate variability, respiratory sinus arrhythmia, and cardiorespiratory synchrony? Biofeedback 35(2):54–61

    Google Scholar 

  • Picard RW, Vyzas E, Healey J (2001) Toward machine emotional intelligence: analysis of affective physiological state. IEEE Trans Pattern Anal Mach Intell 23(10):1175–1191

    Article  Google Scholar 

  • Rani P, Sarkar N, Smith CA, Kirby LD (2004) Anxiety detecting robotic system—towards implicit human-robot collaboration. Robotica 22(1):85–95

    Article  Google Scholar 

  • Reuderink B, Mühl C, Poel M (2013) Valence, arousal and dominance in the EEG during game play. Int J Autom Adaptive Commun Syst 6(1):45–62

    Article  Google Scholar 

  • Richter P, Wagner T, Heger R, Weise G (1998) Psychophysiological analysis of mental load during driving on rural roads—a quasi-experimental field study. Ergonomics 41(5):593:609

    Google Scholar 

  • Rodeghero P, McMillan C, McBurney PW, Bosch N, D’Mello S (2014) Improving automated source code summarization via an eye-tracking study of programmers. In: Proceedings of the 36th international conference on software engineering (ICSE 2014), pp 390–401. https://doi.org/10.1145/2568225.2568247

  • Sammler D, Grigutsch M, Fritz T, Koelsch S (2007) Music and emotion: electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology 44:293–304. https://doi.org/10.1111/j.1469-8986.2007.00497.x

    Article  Google Scholar 

  • Schmidth S, Walach H (2000) Electrodermal activity (EDA)—state-of-the-art measurements and techniques for parapsychological purposes. J Parapsychol 64(2):139:163

    Google Scholar 

  • Setz C, Arnrich B, Schumm J, Marca RL, Tröster G, Ehlert U (2010) Discriminating stress from cognitive load using a wearable EDA device. IEEE Trans Inf Technol Biomed 14(2):410–417

    Article  Google Scholar 

  • Sharif B, Shaffer T (2015) The use of eye tracking in software development. In: Schmorrow DD, Fidopiastis CM (eds) Foundations of augmented cognition. Springer, Cham, pp 807–816

    Chapter  Google Scholar 

  • Sharif B, Falcone M, Maletic JI (2012) An eye-tracking study on the role of scan time in finding source code defects. In: Proceedings of the symposium on eye tracking research and applications (ETRA ’12). ACM, New York, pp 381–384. https://doi.org/10.1145/2168556.2168642

    Chapter  Google Scholar 

  • Sharif B, Clark B, Maletic JI (2016) Studying developer gaze to empower software engineering research and practice. In: Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of software engineering. ACM, New York, pp 940–943. https://doi.org/10.1145/2950290.2983988

    Chapter  Google Scholar 

  • Sharif B, Meinken J, Shaffer T, Kagdi H (2017) Eye movements in software traceability link recovery. Empir Softw Eng 22(3):1063–1102. https://doi.org/10.1007/s10664-016-9486-9

    Article  Google Scholar 

  • Siegmund J, Kästner C, Apel S, Parnin C, Bethmann A, Leich T, Saake G, Brechmann A (2014) Understanding understanding source code with functional magnetic resonance imaging. In: Proceedings of the 36th international conference on software engineering, pp 378–389

    Google Scholar 

  • Siegmund J, Peitek N, Parnin C, Apel S, Hofmeister J, Kästner C, Begel A, Bethmann A, Brechmann A (2017) Measuring neural efficiency of program comprehension. In: Proceedings of the 2017 11th joint meeting on foundations of software engineering (ESEC/FSE 2017). ACM, New York, pp 140–150. https://doi.org/10.1145/3106237.3106268

    Google Scholar 

  • Steptoe A, Wardle J, Marmot M (2005) Positive affect and health-related neuroendocrine, cardiovascular, and inflammatory processes. Proc Natl Acad Sci 102(18):6508–6512

    Article  Google Scholar 

  • Sweller J (1988) Cognitive load during problem solving: effects on learning. Cogn Sci 12(2):257–285

    Article  Google Scholar 

  • Torii K, Matsumoto Ki, Nakakoji K, Takada Y, Takada S, Shima K (1999) Ginger2: an environment for computer-aided empirical software engineering. IEEE Trans Softw Eng 25(4):474–492

    Article  Google Scholar 

  • Uwano H, Nakamura M, Monden A, Matsumoto Ki (2006) Analyzing individual performance of source code review using reviewers’ eye movement. In: Proceedings of the symposium on eye tracking research and applications. ACM, San Diego, pp 133–140

    Google Scholar 

  • Veltman J, Gaillard AW (1998) Physiological workload reactions to increasing levels of task difficulty. Ergonomics 41(5):656–669

    Article  Google Scholar 

  • Walter GF, Porges SW (1976) Heart rate and respiratory responses as a function of task difficulty: the use of discriminant analysis in the selection of psychologically sensitive physiological responses. Psychophysiology 13(6):563–571

    Article  Google Scholar 

  • Wilson GF (1992) Applied use of cardiac and respiration measures: practical considerations and precautions. Biol Psychol 34(2–3):163–178

    Article  Google Scholar 

  • Wrobel MR (2018) Applicability of emotion recognition and induction methods to study the behavior of programmers. Appl Sci 8(3):323. https://doi.org/10.3390/app8030323

    Article  Google Scholar 

  • Züger M, Müller SC, Meyer AN, Fritz T (2018) Sensing interruptibility in the office: a field study on the use of biometric and computer interaction sensors. In: Proceedings of the 2018 CHI conference on human factors in computing systems (CHI ’18). ACM, New York, pp 591:1–591:14. https://doi.org/10.1145/3173574.3174165

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Fagerholm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fagerholm, F., Fritz, T. (2020). Biometric Measurement in Software Engineering. In: Felderer, M., Travassos, G. (eds) Contemporary Empirical Methods in Software Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-32489-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32489-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32488-9

  • Online ISBN: 978-3-030-32489-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics