Skip to main content

Systems Engineering for Machining

  • Chapter
  • First Online:
Systems Engineering in Research and Industrial Practice

Abstract

Machining is the traditional product shaping process by removing materials from a block of original materials. Practically, the machining process itself has not changed much in the last couple of centuries but the accessories around the process have improved significantly, like data logging features in modern computer numerically controlled machines. The machining process is a system, the components of which should be considered as independent units which work harmonously with other systems in the enterprise. In this chapter a systems approach is adopted to examine methods and techniques that can improve five key performance indicators of the machining system, i.e. sustainability, accuracy, efficiency, precision and reliability. In particular, High Speed Machining, tool breakage prevention, thin wall deflection, tool geometry and chatter monitoring are studied in relation to the five performance indicators, respectively. Application of these techniques has produced good machining outcomes showing strategic development direction leading to better performance of the machining system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Astakhov VP (2017) Improving sustainability of machining operation as a system endeavor. In: Davim JP (ed) Sustainable machining. Springer International Publishing Switzerland, pp 1–30

    Google Scholar 

  2. Altintas Y (2016) Virtual high performance machining. Procedia CIRP 46:372–378

    Google Scholar 

  3. Zhang J, Ong SK, Nee AYC (2012) Design and development of an in situ machining simulation system using augmented reality technology. Procedia CIRP 3:185–190

    Article  Google Scholar 

  4. King RI (1985) Handbook of high-speed machining technology. Chapman and Hall, New York

    Book  Google Scholar 

  5. Ding SL, Mo J, Yang D (2010) HSM strategies of CAD/CAM systems—part I tool path generation. Key Eng Mater 426–427:520–524

    Article  Google Scholar 

  6. Byrne G, Dornfeld D, Denkena B (2003) Advancing cutting technology. Ann CIRP 52(2):483–507

    Article  Google Scholar 

  7. Dandekar CR, Shin YC, Barnes J (2010) Machinability improvement of titanium alloy (Ti–6Al–4V) via LAM and hybrid machining. Int J Mach Tools Manuf 50(2):174–182

    Article  Google Scholar 

  8. Boyer R (2010) Attributes, characteristics, and applications of titanium and its alloys. JOM 62(5):21–24

    Article  Google Scholar 

  9. Brinksmeier E, Lucca DA, Walter A (2004) Chemical aspects of machining processes. CIRP Ann 53(2):685–699

    Google Scholar 

  10. Ezugwu EO, da Silva RB, Bonney J, Machado AR (2005) The effect of argon-enriched environment in high-speed machining of titanium alloy. Tribol Trans 48(1):18–23

    Google Scholar 

  11. Tonshoff HK, Winkler J, Gey C (1999) Machining of light metals. Materialwissenschaft und Werkstofftechnik 30(7):401–417

    Google Scholar 

  12. Ítalo Sette Antonialli A, Eduardo DA, Pederiva R (2010) Vibration analysis of cutting force in titanium alloy milling. Int J Mach Tools Manuf 50(1):65–74

    Google Scholar 

  13. Marinac D (2000) Tool path strategies for high speed machining. Mod Mach Shop 72(9):104–110

    Google Scholar 

  14. Haron CHC, Ginting A, Arshad H (2007) Performance of alloyed uncoated and CVD-coated carbide tools in dry milling of titanium alloy Ti-6242S. J Mater Process Technol 185:77–82

    Google Scholar 

  15. Izamshah RAR, Mo JPT, Ding S (2011) Finite element analysis of machining thin-wall parts. J Key Eng Mater 458:283–288

    Article  Google Scholar 

  16. Wan M, Zhang WH, Qin GH, Wang ZP (2008) Strategies for error prediction and error control in peripheral milling of thin-walled workpiece. Int J Mach Tools Manuf 48:1366–1374

    Article  Google Scholar 

  17. Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51(5):363–376

    Article  Google Scholar 

  18. Urbanski JP, Koshy P, Dewes RC, Aspinwall DK (2000) High speed machining of moulds and dies for net shape manufacture. Mater Des 21:395–402

    Article  Google Scholar 

  19. Field R, Beard T (1996) High speed machining of dies and molds. Modern Mach Shop 69(6):76–83

    Google Scholar 

  20. Ding S, Mannan MA, Poo AN, Yang DCH, Han Z (2003) Adaptive iso-planar tool path generation for machining of free-form surfaces. Comput-Aided Des 35(2):141–153

    Google Scholar 

  21. Ding SL, Mo JPT, Yang D (2010) HSM strategies of CAD/CAM systems—part II industry applications. Key Eng Mater 426–427:559–563

    Article  Google Scholar 

  22. Marinac D (2017) Tool path strategies for high speed machining. Available from http://www.mmsonline.com/articles/tool-path-strategies-for-high-speed-machining, 9 Sept 2017

  23. Esprit CAM software online help, Available from http://www.espritcam.com/support/overview, 9 Sept 2017

  24. Bieterman M (2001) Curvilinear tool paths for pocket machining. Seminar on Industrial Problems, Institute for Mathematics and its Applications (IMA), University of Minnesota, 16 Mar 2001

    Google Scholar 

  25. Ding S, Yang D, Han Z (2005) Boundary-conformed machining of turbine blades. Proc Inst Mech Eng Part B: J Eng Manuf 219(3):255–263

    Article  Google Scholar 

  26. Fallböhmer P, Rodríguez CA, Özel T, Altan T (2000) High-speed machining of cast iron and alloy steels for die and mold manufacturing. J Mater Process Technol 98(1):104–115

    Article  Google Scholar 

  27. Ezugwu EO, Wang ZM (1997) Titanium alloys and their machinability a review. J Mater Process Technol 68:262–274

    Google Scholar 

  28. Nabhani F (2001) Machining of aerospace titanium alloys. Robot Comput Integr Manuf 17:99–106

    Article  Google Scholar 

  29. Shivpuri R, Hua J, Mittall P, Srivastava AK (2002) Microstructure-mechanics interactions in modeling chip segmentation during titanium machining. CIRP Ann 51(1):71–74

    Google Scholar 

  30. Budak E, Altintas Y (1994) Peripheral milling conditions for improved dimensional accuracy. Int J Mach Tools Manuf 34:907–918

    Article  Google Scholar 

  31. Kline WA, DeVor RE, Shareef IA (1982) The prediction of surface accuracy in end milling, ASME. J Eng Ind 104:272–278

    Article  Google Scholar 

  32. Elbestawi MA, Sagherian R (1991) Dynamics modelling for the prediction of surface errors in the milling of thin-walled sections. J Mater Process Technol 25:215–228

    Article  Google Scholar 

  33. Sutherland JW, DeVor RE (1986) An improved method for cutting force and surface error prediction in flexile end milling system. ASME J Eng Ind 108:269–279

    Article  Google Scholar 

  34. Tsai JS, Liao CL (1999) Finite element modelling of static surface errors in the peripheral milling of thin-walled workpiece. J Mater Process Technol 94:235–246

    Article  Google Scholar 

  35. Ratchev S, Huang W, Liu S, Becker AA (2004) Milling error prediction and compensation in machining of low-rigidity parts. Int J Mach Tools Manuf 44:1629–1641

    Article  Google Scholar 

  36. Izamshah RRA, Mo JPT, Ding S (2012) Hybrid deflection prediction on machining thin-wall monolithic aerospace components. J Eng Manuf 226(4):592–605

    Google Scholar 

  37. Gradisek J, Kalveram M, Weinert K (2004) Mechanistic identification of specific force coefficients for a general end mill. Int J Mach Tools Manuf 44:401–414

    Article  Google Scholar 

  38. Chen W, Xue J, Tang D, Chen H, Qu S (2009) Deformation prediction and error compensation in multilayer milling process for thin-walled parts. Int J Mach Tools Manuf 49:859–864

    Article  Google Scholar 

  39. Wan M, Zhang WH, Tan G, Qin GH (2007) New cutting force modelling approach for flat end mill. Chin J Aeronaut 20:282–288

    Article  Google Scholar 

  40. Bhaumik SK, Divakar C, Singh AK (1995) Machining Ti6Al4V alloy with a wBN-cBN composite tool. Mater Des 16(4):221–226

    Article  Google Scholar 

  41. Sreejith PS, Krishnamurthy R, Malhotra SK (2000) Evaluation of PCD tool performance during machining of carbon/phenolic ablative composites. J Mater Process Technol 104(1):53–58

    Article  Google Scholar 

  42. Liang L, Liu X, Li X, Li YY (2015) Wear mechanisms of WC–10Ni3Al carbide tool in dry turning of Ti6Al4V. Int J Refract Metal Hard Mater 48:272–285

    Article  Google Scholar 

  43. Gradišek J, Kalveram M, Insperger T et al (2005) On stability prediction for milling. Int J Mach Tools Manuf 45(7–8):769–781

    Article  Google Scholar 

  44. Ding Y, Zhu L, Zhang X et al (2010) A full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 50(5):502–509

    Article  Google Scholar 

  45. Totis G (2009) RCPM-A new method for robust chatter prediction in milling. Int J Mach Tools Manuf 49(3–4):273–284

    Article  Google Scholar 

  46. Quintana G, Ciurana J, Ferrer I et al (2009) Sound mapping for identification of stability lobe diagrams in milling processes. Int J Mach Tools Manuf 49(3–4):203–211

    Article  Google Scholar 

  47. Grabec I, Gradišek J, Govekar E (1999) A new method for chatter detection in turning. CIRP Ann Manuf Technol 48(1):29–32

    Article  Google Scholar 

  48. Stephenson DA, Agapiou JS (2006) Metal cutting theory and practice. CRC Taylor & Francis

    Google Scholar 

  49. Wan M, Wang Y-T, Zhang W-H, Yang Y, Dang J-W (2011) Prediction of chatter stability for multiple-delay milling system under different cutting force models. Int J Mach Tools Manuf 51(4):281–295

    Article  Google Scholar 

  50. Koohestani A, Mo JPT, Yang S (2014) Stability prediction of titanium milling with data driven reconstruction of phase-space. Mach Sci Technol Int J 18(1):78–98. https://doi.org/10.1080/10910344.2014.863638

    Article  Google Scholar 

  51. Rusinek R, Warminski J (2009) Attractor reconstruction of self-excited mechanical systems. Chaos Solitons Fractals 40(1):172–182

    Article  Google Scholar 

  52. Kautz R (2011) Chaos: the science of predictable random motion. Oxford University Press, New York. ISBN 978-0-19-959457-3

    Google Scholar 

  53. Wu CL, Chau KW (2010) Data-driven models for monthly streamflow time series prediction. Eng Appl Artif Intell 23(8):1350–1367

    Article  Google Scholar 

  54. Shang P, Na X, Kamae S (2009) Chaotic analysis of time series in the sediment transport phenomenon. Chaos Solitons Fractals 41(1):368–379

    Article  Google Scholar 

  55. Kodba S, Perc M, Marhl M (2005) Detecting chaos from a time series. Eur J Phys 26(1):205

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. T. Mo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mo, J.P.T., Ding, S. (2019). Systems Engineering for Machining. In: Stjepandić, J., Wognum, N., J. C. Verhagen, W. (eds) Systems Engineering in Research and Industrial Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-33312-6_11

Download citation

Publish with us

Policies and ethics