Skip to main content

Trajectory Prediction by Coupling Scene-LSTM with Human Movement LSTM

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11844))

Included in the following conference series:

Abstract

We develop a novel human trajectory prediction system that incorporates the scene information (Scene-LSTM) as well as individual pedestrian movement (Pedestrian-LSTM) trained simultaneously within static crowded scenes. We superimpose a two-level grid structure (grid cells and subgrids) on the scene to encode spatial granularity plus common human movements. The Scene-LSTM captures the commonly traveled paths that can be used to significantly influence the accuracy of human trajectory prediction in local areas (i.e. grid cells). We further design scene data filters, consisting of a hard filter and a soft filter, to select the relevant scene information in a local region when necessary and combine it with Pedestrian-LSTM for forecasting a pedestrian’s future locations. The experimental results on several publicly available datasets demonstrate that our method outperforms related works and can produce more accurate predicted trajectories in different scene contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–971 (2016)

    Google Scholar 

  2. Ballan, L., Castaldo, F., Alahi, A., Palmieri, F., Savarese, S.: Knowledge transfer for scene-specific motion prediction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part I. LNCS, vol. 9905, pp. 697–713. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_42

    Chapter  Google Scholar 

  3. Bartoli, F., Lisanti, G., Ballan, L., Del Bimbo, A.: Context-aware trajectory prediction. In: International Conference on Pattern Recognition, pp. 1941–1946. IEEE (2018)

    Google Scholar 

  4. Benfold, B., Reid, I.: Stable multi-target tracking in real-time surveillance video. In: CVPR, pp. 3457–3464. IEEE (2011)

    Google Scholar 

  5. Ferryman, J., Shahrokni, A.: PETS 2009: dataset and challenge. In: Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, pp. 1–6. IEEE (2009)

    Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  7. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2255–2264 (2018)

    Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint: arXiv:1412.6980 (2014)

  9. Leonard, J.J., Durrant-Whyte, H.F.: Application of multi-target tracking to sonar-based mobile robot navigation. In: 29th IEEE Conference on Decision and Control, pp. 3118–3123. IEEE (1990)

    Google Scholar 

  10. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. In: Computer Graphics Forum, vol. 26, pp. 655–664. Wiley Online Library (2007)

    Google Scholar 

  11. Levinson, J., et al.: Towards fully autonomous driving: systems and algorithms. In: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 163–168. IEEE (2011)

    Google Scholar 

  12. Manh, H., Alaghband, G.: Spatiotemporal KSVD dictionary learning for online multi-target tracking. In: 2018 15th Conference on Computer and Robot Vision (CRV), pp. 150–157. IEEE (2018)

    Google Scholar 

  13. Paszke, A., Gross, S., Chintala, S., Chanan, G.: PyTorch: tensors and dynamic neural networks in python with strong GPU acceleration 6 (2017)

    Google Scholar 

  14. Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 261–268. IEEE (2009)

    Google Scholar 

  15. Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S.: Learning social etiquette: human trajectory understanding in crowded scenes. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part VIII. LNCS, vol. 9912, pp. 549–565. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_33

    Chapter  Google Scholar 

  16. Trautman, P., Krause, A.: Unfreezing the robot: navigation in dense, interacting crowds. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 797–803. IEEE (2010)

    Google Scholar 

  17. Varshneya, D., Srinivasaraghavan, G.: Human trajectory prediction using spatially aware deep attention models. arXiv preprint: arXiv:1705.09436 (2017)

  18. Vemula, A., Muelling, K., Oh, J.: Social attention: modeling attention in human crowds. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1–7. IEEE (2018)

    Google Scholar 

  19. Vivacqua, R.P.D., Bertozzi, M., Cerri, P., Martins, F.N., Vassallo, R.F.: Self-localization based on visual lane marking maps: an accurate low-cost approach for autonomous driving. IEEE Trans. Intell. Transp. Syst. 19(2), 582–597 (2017)

    Article  Google Scholar 

  20. Xu, Y., Piao, Z., Gao, S.: Encoding crowd interaction with deep neural network for pedestrian trajectory prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5275–5284 (2018)

    Google Scholar 

  21. Xue, H., Huynh, D.Q., Reynolds, M.: SS-LSTM: a hierarchical LSTM model for pedestrian trajectory prediction. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1186–1194. IEEE (2018)

    Google Scholar 

  22. Yamaguchi, K., Berg, A.C., Ortiz, L.E., Berg, T.L.: Who are you with and where are you going? In: CVPR 2011, pp. 1345–1352. IEEE (2011)

    Google Scholar 

  23. Zhou, B., Wang, X., Tang, X.: Understanding collective crowd behaviors: learning a mixture model of dynamic pedestrian-agents. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2871–2878. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manh Huynh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huynh, M., Alaghband, G. (2019). Trajectory Prediction by Coupling Scene-LSTM with Human Movement LSTM. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11844. Springer, Cham. https://doi.org/10.1007/978-3-030-33720-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33720-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33719-3

  • Online ISBN: 978-3-030-33720-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics