Skip to main content

ContourNet: Salient Local Contour Identification for Blob Detection in Plasma Fusion Simulation Data

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11844))

Included in the following conference series:

Abstract

We present ContourNet, a deep learning approach to identify salient local isocontours as blobs in large-scale 5D gyrokinetic tokamak simulation data. Blobs—regions of high turbulence that run along the edge wall down toward the diverter and can damage the tokamak—are non-well-defined features but have been empirically localized by isocontours in 2D normalized fluctuating density fields. The key of our study is to train ContourNet to follow the empirical rules to detect blobs over the time-varying simulation data. The architecture of ContourNet is a convolutional neural segmentation network: the inputs are the density field and a rasterized isocontour; the output is a set of isocontour encircling blobs. At the training stage, we feed the network with manually identified isocontours and propagated labels. At the inference stage, we extract isocontours from the segmented blob regions. Results show that our approach can achieve both high accuracy and performance, which enables scientists to understand the blob dynamics influencing the confinement of the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A PyTorch implementation can be found at https://github.com/mimre25/ContourNet.

References

  1. Bajaj, C.L., Pascucci, V., Schikore, D.R.: The contour spectrum. In: Proceedings of IEEE Visualization Conference, pp. 167–173 (1997)

    Google Scholar 

  2. Bruckner, S., Möller, T.: Isosurface similarity maps. Comput. Graph. Forum 29(3), 773–782 (2010)

    Article  Google Scholar 

  3. Carr, H., Brian, D., Brian, D.: On histograms and isosurface statistics. IEEE Trans. Vis. Comput. Graph. 12(5), 1259–1266 (2006)

    Article  Google Scholar 

  4. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. In: Proceedings of ACM Symposium on Discrete Algorithms, pp. 918–926 (2000)

    Google Scholar 

  5. Carr, H., Snoeyink, J., Van De Panne, M.: Flexible isosurfaces: simplifying and displaying scalar topology using the contour tree. Comput. Geom. 43(1), 42–58 (2010)

    Article  MathSciNet  Google Scholar 

  6. Chang, C.S., et al.: Fast low-to-high confinement mode bifurcation dynamics in a tokamak edge plasma gyrokinetic simulation. Phys. Rev. Lett. 118(17), 1–6 (2017)

    Article  Google Scholar 

  7. Chang, C.S., Ku, S.: Spontaneous rotation sources in a quiescent tokamak edge plasma. Phys. Plasmas 15(6), 062510 (2008)

    Article  Google Scholar 

  8. Chang, C.S., et al.: Compressed ion temperature gradient turbulence in diverted tokamak edge. Phys. Plasmas 16(5), 056108 (2009)

    Article  Google Scholar 

  9. Churchill, R.M., Chang, C.S., Ku, S., Dominski, J.: Pedestal and edge electrostatic turbulence characteristics from an XGC1 gyrokinetic simulation. Plasma Phys. Control. Fusion 59(10), 105014 (2017)

    Article  Google Scholar 

  10. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016, Part II. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  11. Davis, W.M., Ko, M.K., Maqueda, R.J., Roquemore, A.L., Scotti, F., Zweben, S.J.: Fast 2-D camera control, data acquisition, and database techniques for edge studies on NSTX. Fusion Eng. Des. 89(5), 717–720 (2014)

    Article  Google Scholar 

  12. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  13. D’Ippolito, D., Myra, J., Zweben, S.: Convective transport by intermittent blob-filaments: comparison of theory and experiment. Phys. Plasmas 18(6), 060501 (2011)

    Article  Google Scholar 

  14. Haidacher, M., Bruckner, S., Groller, E.: Volume analysis using multimodal surface similarity. IEEE Trans. Vis. Comput. Graph. 17(12), 1969–1978 (2011)

    Article  Google Scholar 

  15. Imre, M., Tao, J., Wang, C.: Identifying nearly equally spaced isosurfaces for volumetric data sets. Comput. Graph. 72, 82–97 (2018)

    Article  Google Scholar 

  16. Kube, R., Garcia, O.E., LaBombard, B., Terry, J., Zweben, S.: Blob sizes and velocities in the alcator c-mod scrape-off layer. J. Nucl. Mater. 438, S505–S508 (2013)

    Article  Google Scholar 

  17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  18. McKinley, R., et al.: Nabla-net: a deep dag-like convolutional architecture for biomedical image segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. LNCS, vol. 10154, pp. 119–128. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55524-9_12

    Chapter  Google Scholar 

  19. Meyer, M., Scheidegger, C.E., Schreiner, J.M., Duffy, B., Carr, H., Silva, C.T.: Revisiting histograms and isosurface statistics. IEEE Trans. Vis. Comput. Graph. 14(6), 1659–1666 (2008)

    Article  Google Scholar 

  20. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of International Conference on 3D Vision, pp. 565–571 (2016)

    Google Scholar 

  21. Pascucci, V., Cole-McLaughin, K., Scorzelli, G.: Multi-resolution computation and presentation of contour trees. LLNL Technical report number UCRL-PROC-208680. Lawrence Livermore National Laboratory, Livermore (2004)

    Google Scholar 

  22. Pekar, V., Wiemker, R., Hempel, D.: Fast detection of meaningful isosurfaces for volume data visualization. In: Proceedings of IEEE Visualization Conference, pp. 223–230 (2001)

    Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Seyedhosseini, M., Sajjadi, M., Tasdizen, T.: Image segmentation with cascaded hierarchical models and logistic disjunctive normal networks. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2168–2175 (2013)

    Google Scholar 

  25. Tao, J., et al.: Exploring time-varying multivariate volume data using matrix of isosurface similarity maps. IEEE Trans. Vis. Comput. Graph. 25(1), 1236–1245 (2019)

    Article  Google Scholar 

  26. Wang, G., et al.: DeepIGeoS: a deep interactive geodesic framework for medical image segmentation. arXiv preprint: arXiv:1707.00652 (2017)

  27. Wang, G., et al.: Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans. Med. Imaging 37(7), 1562–1573 (2018)

    Article  Google Scholar 

  28. Wu, L., et al.: Towards real-time detection and tracking of spatio-temporal features: blob-filaments in fusion plasma. IEEE Trans. Big Data 2(3), 262–275 (2016)

    Article  Google Scholar 

  29. Zweben, S., et al.: Edge and SOL turbulence and blob variations over a large database in NSTX. Nucl. Fusion 55(9), 093035 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the U.S. National Science Foundation through grants IIS-1455886, CNS-1629914, and DUE-1833129, and the U.S. Department of Energy through grant DE-AC02-06CH11357 and the Exascale Computing Project (17-SC-20-SC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Imre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Imre, M. et al. (2019). ContourNet: Salient Local Contour Identification for Blob Detection in Plasma Fusion Simulation Data. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11844. Springer, Cham. https://doi.org/10.1007/978-3-030-33720-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33720-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33719-3

  • Online ISBN: 978-3-030-33720-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics