Skip to main content

Age Group and Gender Classification of Unconstrained Faces

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11844))

Included in the following conference series:

Abstract

Age and Gender classification of unconstrained imaging conditions has attracted an increased recognition as it is applicable in many real-world applications. Recent deep learning-based methods have shown encouraging performance in this field. We, therefore, propose an end-to-end deep learning-based method for robust age group and gender classification of unconstrained images. Particularly, we address the estimations problem with a classification based model that treats age value as a separate class and an independent label. The proposed deep convolutional neural network model learns the relevant informative age and gender representations directly from the image pixel. Technically, the model is first pre-trained on large-scale IMDb-WIKI facial aging dataset, and then fine-tuned on MORPH-II, another large-scale facial aging dataset to learn, and pick up the bias and particularities of each dataset. Finally, it is fine-tuned on the original dataset (OIU-Adience benchmark) with gender and age group labels. The experimental results when analyzed for estimation accuracy on OIU-Adience dataset, show that our model obtains the state-of-the-art performance in both age group and gender classification with an exact and one-off accuracy of 83.1% and 93.8% on age, and also an exact accuracy of 96.2% on gender.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anand, A., Labati, R.D., Genovese, A., Munoz, E., Piuri, V., Scotti, F.: Age estimation based on face images and pre-trained convolutional neural networks. In: 2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Proceedings 2017, pp. 1–7 (2017). https://doi.org/10.1109/SSCI.2017.8285381. http://ieeexplore.ieee.org/document/8285381/

  2. Badame, V., Jamadagni, M.: Study of approaches for human facial age. Int. J. Innovative Res. Sci. Eng. Technol. 6(8), 2347–6710 (2017). https://doi.org/10.15680/IJIRSET.2016.0608148

    Article  Google Scholar 

  3. Broussely, M., Planchat, J.P., Rigobert, G., Virey, D., Sarre, G.: Lithium-ion batteries for electric vehicles: performances of 100 Ah cells. J. Power Sources 68(1), 8–12 (1997). https://doi.org/10.1016/S0378-7753(96)02544-X

    Article  Google Scholar 

  4. Dib, M.Y.E., El-saban, M.: Human Age Estimation Using Enhanced Bio-inspired Features (EBIF), pp. 1–4. Faculty of Computers and Information, Cairo University, Cairo, Egypt (2010)

    Google Scholar 

  5. Duan, M., Li, K., Li, K.: An ensemble CNN2ELM for age estimation. IEEE Trans. Inf. Forensics Secur. 13(3), 758–772 (2018). https://doi.org/10.1109/TIFS.2017.2766583

    Article  Google Scholar 

  6. Duan, M., Li, K., Yang, C., Li, K.: A hybrid deep learning CNN-ELM for age and gender classification. Neurocomputing 275, 448–461 (2018). https://doi.org/10.1016/j.neucom.2017.08.062

    Article  Google Scholar 

  7. Eidinger, E., Enbar, R., Hassner, T.: Age and gender estimation of unfiltered faces. IEEE Trans. Inf. Forensics Secur. 9(12), 2170–2179 (2014). https://doi.org/10.1109/TIFS.2014.2359646. http://www.adience.com

    Article  Google Scholar 

  8. Fu, Y., Guo, G., Huang, T.S.: Age synthesis and estimation via faces: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 1955–1976 (2010). https://doi.org/10.1109/TPAMI.2010.36

    Article  Google Scholar 

  9. Fu, Y., Huang, T.S.: Human age estimation with regression on discriminative aging manifold. IEEE Trans. Multimedia 10(4), 578–584 (2008). https://doi.org/10.1109/TMM.2008.921847

    Article  Google Scholar 

  10. Gallagher, A.C., Chen, T.: Estimating age, gender, and identity using first name priors. In: 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR (Sect. 3) (2008). https://doi.org/10.1109/CVPR.2008.4587609

  11. Gao, F., Ai, H.: Face age classification on consumer images with gabor feature and fuzzy LDA method. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 132–141. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01793-3_14

    Chapter  Google Scholar 

  12. Guerra, E., de Lara, J., Malizia, A., Díaz, P.: Supporting user-oriented analysis for multi-view domain-specific visual languages. Inf. Soft. Technol. 51, 769–784 (2015). https://doi.org/10.1016/j.infsof.2008.09.005. http://arxiv.org/abs/1409.1556

  13. Günther, J., Pilarski, P.M., Helfrich, G., Shen, H., Diepold, K.: First steps towards an intelligent laser welding architecture using deep neural networks and reinforcement learning. Procedia Technol. 15, 474–483 (2014). https://doi.org/10.1016/j.protcy.2014.09.007

    Article  Google Scholar 

  14. Guo, G., Fu, Y., Dyer, C.R., Huang, T.S.: Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Trans. Image Process. 17(7), 1178–1188 (2008). https://doi.org/10.1109/TIP.2008.924280

    Article  MathSciNet  Google Scholar 

  15. Guo, G., Mu, G.: Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 657–664 (2011). https://doi.org/10.1109/CVPR.2011.5995404

  16. Han, H., Jain, A.K.: Age. Gender and race estimation from unconstrained face images, Technical report (2014)

    Google Scholar 

  17. Ricanek Jr., K., Tesafaye, T.: MORPH: a longitudinal image age-progression, of normal adult. In: Proceedings of 7th International Conference on Automatic Face Gesture Recognition, pp. 0–4 (2006)

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR, pp. 1–15 (2014). http://arxiv.org/abs/1412.6980

  19. Levi, G., Hassncer, T.: Age and gender classification using convolutional neural networks. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2015, pp. 34–42, October 2015. https://doi.org/10.1109/CVPRW.2015.7301352. http://ieeexplore.ieee.org/document/7301352/

  20. Liu, W., Chen, L., Chen, Y.: Age classification using convolutional neural networks with the multi-class focal loss. In: IOP Conference Series: Materials Science and Engineering, vol. 428, no. 1 (2018). https://doi.org/10.1088/1757-899X/428/1/012043

  21. Mathias, M., Benenson, R., Pedersoli, M., Van Gool, L.: Face detection without bells and whistles. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 720–735. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_47

    Chapter  Google Scholar 

  22. Qawaqneh, Z., Mallouh, A.A., Barkana, B.D.: Deep convolutional neural network for age estimation based on VGG-face model. arXiv, September 2017. http://arxiv.org/abs/1709.01664

  23. Rothe, R., Timofte, R., Van Gool, L.: Deep expectation of real and apparent age from a single image without facial landmarks. Int. J. Comput. Vis. 126(2–4), 144–157 (2018). https://doi.org/10.1007/s11263-016-0940-3

    Article  MathSciNet  Google Scholar 

  24. Sahoo, T.K., Banka, H.: Multi-feature-based facial age estimation using an incomplete facial aging database. Arab. J. Sci. Eng. 43(12), 8057–8078 (2018). https://doi.org/10.1007/s13369-018-3293-0. http://link.springer.com/10.1007/s13369-018-3293-0

    Article  Google Scholar 

  25. Shaik, S., Micheal, A.A.: Automatic age and gender recognition in human face image dataset using convolutional neural network system. Int. J. Adv. Res. Comput. Sci. Manage. Stud. 4(2), 14–23 (2016)

    Google Scholar 

  26. Uřičář, M., Franc, V., Thomas, D., Sugimoto, A., Hlaváč, V.: Multi-view facial landmark detector learned by the structured output SVM. Image Vis. Comput. 47, 45–59 (2015). https://doi.org/10.1016/j.imavis.2016.02.004

    Article  Google Scholar 

  27. Yan, S., Liu, M., Huang, T.S.: Extracting age information from local spatially flexible patches. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP Proceedings, pp. 737–740 (2008). https://doi.org/10.1109/ICASSP.2008.4517715

  28. Zhang, K., et al.: Age group and gender estimation in the wild with deep RoR architecture. IEEE Access 5(X), 22492–22503 (2017). https://doi.org/10.1109/ACCESS.2017.2761849

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serestina Viriri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agbo-Ajala, O., Viriri, S. (2019). Age Group and Gender Classification of Unconstrained Faces. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11844. Springer, Cham. https://doi.org/10.1007/978-3-030-33720-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33720-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33719-3

  • Online ISBN: 978-3-030-33720-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics