Skip to main content

3-D Human Body Posture Reconstruction by Computer Vision

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11835))

Included in the following conference series:

Abstract

Human limb movement sensing is crucial in different areas of science. In this paper, a method for sensing human limb movement and the subsequent reconstruction in a 3-D plane is described. The sensors used in this task are four Microsoft Kinect, which has depth and RGB cameras. Depth images are processed by artificial vision algorithms to delimit an area where the movements will be performed. In the other hand, RGB images are processed by a Convolutional Neural Network to acquire a series of specific points which correspond to the human body’s joints. A comparison of the proposed algorithm performance is also described. The equations that relate the information in two dimensions are obtained by processing the four sensors are used to generate a skeleton in 3-D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsai, A.-C., Luh, J.-J., Lin, T.-T.: A novel STFT-ranking feature of multi-channel EMG for motion pattern recognition. Expert Syst. Appl. 42, 3327–3341 (2015)

    Article  Google Scholar 

  2. Brahmi, B., Saad, M., Ochoa-Luna, C., Rahman, M.H., Brahmi, A.: Adaptive tracking control of an exoskeleton robot with uncertain dynamics based on estimated time-delay control. IEEE/ASME Trans. Mechatron. 23, 575–585 (2018)

    Article  Google Scholar 

  3. Yang, C., Chang, S., Liang, P., Li, Z., Su, C.Y.: Teleoperated robot writing using EMG signals. In: 2015 IEEE International Conference on Information and Automation, pp. 2264–2269 (2015)

    Google Scholar 

  4. Liu, L., Zhang, Y., Liu, G., Xu, W.: Variable motion mapping to enhance stiffness discrimination and identification in robot hand teleoperation. Robot. Comput.-Integr. Manuf. 51, 202–208 (2018)

    Article  Google Scholar 

  5. Toyama, G., Hashida, T.: A detachable exoskeleton interface that duplicates the user’s hand posture and motions. In: Proceedings of the 9th Augmented Human International Conference, pp. 1–5. ACM, Seoul (2018)

    Google Scholar 

  6. Won, J.H., Yang, G.H., Jeon, J.W.: A novel wireless vibrotactile display device for representing 3DOF force feedback in teleoperation. In: 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1749–1753 (2015)

    Google Scholar 

  7. Du, Y.-C., Shih, C.-B., Fan, S.-C., Lin, H.-T., Chen, P.-J.: An IMU-compensated skeletal tracking system using Kinect for the upper limb. Microsystem Technologies (2018)

    Google Scholar 

  8. Brüggemann, B., Röhling, T., Welle, J.: Coupled human-machine tele-manipulation. Procedia Manuf. 3, 998–1005 (2015)

    Article  Google Scholar 

  9. Kim, M.K., Ryu, K., Oh, Y., Oh, S.R., Kim, K.: Implementation of real-time motion and force capturing system for tele-manipulation based on sEMG signals and IMU motion data. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5658–5664 (2014)

    Google Scholar 

  10. Lu, Z., Cheng, D., Dong, H., Yu, Y.: Study of human motion capture and robot motion replay for lower limb exoskeleton. In: 2017 IEEE International Conference on Cyborg and Bionic Systems (CBS), pp. 206–210 (2017)

    Google Scholar 

  11. OpenKinect. https://openkinect.org/wiki/Main_Page. Accessed 14 Aug 2019

  12. Microsoft Kinect Xbox 360. https://support.xbox.com/es-MX/xbox-360/accessories/kinect-sensor-components. Accessed 14 Aug 2019

  13. Hafiane, S., Salih, Y., Malik, A.S.: 3D hand recognition for telerobotics. In: 2013 IEEE Symposium on Computers & Informatics (ISCI), pp. 132–137 (2013)

    Google Scholar 

  14. Zhao, W.: A concise tutorial on human motion tracking and recognition with Microsoft Kinect. Sci. China Inf. Sci. 59, 93101 (2016)

    Article  Google Scholar 

  15. Wei, S., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4724–4732 (2016)

    Google Scholar 

  16. Bogo, F., Black, M.J., Loper, M., Romero, J.: Detailed full-body reconstructions of moving people from monocular RGB-D sequences. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2300–2308. IEEE Computer Society (2015)

    Google Scholar 

  17. Ajili, I., Mallem, M., Didier, J.Y.: Gesture recognition for humanoid robot teleoperation. In: 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 1115–1120 (2017)

    Google Scholar 

  18. Guanglong, D.U., Zhang, P.: Human–manipulator interface using hybrid sensors with Kalman filters and adaptive multi-space transformation. Measurement 55, 413–422 (2014)

    Article  Google Scholar 

  19. Munoz, J.M., Avalos, J., Ramos, O.E.: Image-driven drawing system by a NAO robot. In: 2017 Electronic Congress (E-CON UNI), pp. 1–4 (2017)

    Google Scholar 

  20. Saini, S., Zakaria, N., Rambli, D.R.A., Sulaiman, S.: Markerless human motion tracking using hierarchical multi-swarm cooperative particle swarm optimization. PLoS ONE 10, e0127833 (2015)

    Article  Google Scholar 

  21. Kim, Y., Baek, S., Bae, B.-C.: Motion capture of the human body using multiple depth sensors. ETRI J. 39, 181–190 (2017)

    Article  Google Scholar 

  22. Moon, S., Park, Y., Ko, D.W., Suh, I.H.: Multiple Kinect sensor fusion for human skeleton tracking using Kalman filtering. Int. J. Adv. Rob. Syst. 13, 65 (2016)

    Article  Google Scholar 

  23. Córdova-Esparza, D.-M., Terven, J.R., Jiménez-Hernández, H., Vázquez-Cervantes, A., Herrera-Navarro, A.-M., Ramírez-Pedraza, A.: Multiple Kinect V2 calibration. Automatika 57, 810–821 (2016)

    Article  Google Scholar 

  24. Núñez, J.C., Cabido, R., Montemayor, A.S., Pantrigo, J.J.: Real-time human body tracking based on data fusion from multiple RGB-D sensors. Multimed. Tools Appl. 76, 4249–4271 (2017)

    Article  Google Scholar 

  25. Cao, Z., Simon, T., Wei, S., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1302–1310 (2017)

    Google Scholar 

  26. Zuher, F., Romero, R.: Recognition of human motions for imitation and control of a humanoid robot. In: 2012 Brazilian Robotics Symposium and Latin American Robotics Symposium, pp. 190–195 (2012)

    Google Scholar 

  27. Xu, Y., Yang, C., Zhong, J., Wang, N., Zhao, L.: Robot teaching by teleoperation based on visual interaction and extreme learning machine. Neurocomputing 275, 2093–2103 (2018)

    Article  Google Scholar 

  28. Ajili, I., Mallem, M., Didier, J.-Y.: Robust human action recognition system using Laban Movement Analysis. Procedia Comput. Sci. 112, 554–563 (2017)

    Article  Google Scholar 

  29. Cerulo, I., Ficuciello, F., Lippiello, V., Siciliano, B.: Teleoperation of the SCHUNK S5FH under-actuated anthropomorphic hand using human hand motion tracking. Robot. Auton. Syst. 89, 75–84 (2017)

    Article  Google Scholar 

  30. Ali, S.K., Firdaus, A.R., Tokhi, M.O., Al-Rezage, G.: Tracking human upper-limb movements with sliding mode control type-II fuzzy logic. In: 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 426–431 (2016)

    Google Scholar 

  31. Caffe. https://caffe.berkeleyvision.org/. Accessed 14 Aug 2019

  32. MPII Human Pose Dataset. http://human-pose.mpi-inf.mpg.de/. Accessed 14 Aug 2019

  33. Orbbec. https://orbbec3d.com/. Accessed 14 Aug 2019

Download references

Acknowledgements

The authors would like to thank the Instituto Politécnico Nacional for the support to carry out this research. H. Sossa appreciates the economic support received from the SIP-IPN and CONACYT under grants 20190007 and 65 (Frontiers of Science), respectively, to conduct this investigation. J. Cruz appreciates the economic support received from the SIP-IPN under grants 20195940 to conduct this investigation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jacobo E. Cruz-Silva , Jesús Y. Montiel-Pérez or Humberto Sossa-Azuela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cruz-Silva, J.E., Montiel-Pérez, J.Y., Sossa-Azuela, H. (2019). 3-D Human Body Posture Reconstruction by Computer Vision. In: Martínez-Villaseñor, L., Batyrshin, I., Marín-Hernández, A. (eds) Advances in Soft Computing. MICAI 2019. Lecture Notes in Computer Science(), vol 11835. Springer, Cham. https://doi.org/10.1007/978-3-030-33749-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33749-0_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33748-3

  • Online ISBN: 978-3-030-33749-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics