Skip to main content

Layered Learning for Early Anomaly Detection: Predicting Critical Health Episodes

  • Conference paper
  • First Online:
Discovery Science (DS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11828))

Included in the following conference series:

Abstract

Critical health events represent a relevant cause of mortality in intensive care units of hospitals, and their timely prediction has been gaining increasing attention. This problem is an instance of the more general predictive task of early anomaly detection in time series data. One of the most common approaches to solve this problem is to use standard classification methods. In this paper we propose a novel method that uses a layered learning architecture to solve early anomaly detection problems. One key contribution of our work is the idea of pre-conditional events, which denote arbitrary but computable relaxed versions of the event of interest. We leverage this idea to break the original problem into two layers, which we hypothesize are easier to solve. Focusing on critical health episodes, the results suggest that the proposed approach is advantageous relative to state of the art approaches for early anomaly detection. Although we focus on a particular case study, the proposed method is generalizable to other domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellazzi, R., Zupan, B.: Predictive data mining in clinical medicine: current issues and guidelines. Int. J. Med. Informatics 77(2), 81–97 (2008)

    Article  Google Scholar 

  2. Benavoli, A., Corani, G., Demšar, J., Zaffalon, M.: Time for a change: a tutorial for comparing multiple classifiers through bayesian analysis. J. Mach. Learn. Res. 18(1), 2653–2688 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y.: xgboost: eXtreme gradient boosting, 2017. R package version 0.6-4 (2015)

    Google Scholar 

  4. Decroos, T., Dzyuba, V., Van Haaren, J., Davis, J.: Predicting soccer highlights from spatio-temporal match event streams. In: AAAI, pp. 1302–1308 (2017)

    Google Scholar 

  5. Fawcett, T., Provost, F.: Activity monitoring: noticing interesting changes in behavior. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 53–62. ACM (1999)

    Google Scholar 

  6. Ferreira, C., Gama, J., Matias, L., Botterud, A., Wang, J.: A survey on wind power ramp forecasting. Technical report, Argonne National Lab. (ANL), Argonne, IL (United States) (2011)

    Google Scholar 

  7. Forkan, A.R.M., Khalil, I., Atiquzzaman, M.: ViSiBiD: a learning model for early discovery and real-time prediction of severe clinical events using vital signs as big data. Comput. Netw. 113, 244–257 (2017)

    Article  Google Scholar 

  8. Ghosh, S., Feng, M., Nguyen, H., Li, J.: Hypotension risk prediction via sequential contrast patterns of ICU blood pressure. IEEE J. Biomed. Health Inform. 20(5), 1416–1426 (2016)

    Article  Google Scholar 

  9. He, H., Ma, Y.: Imbalanced Learning: Foundations, Algorithms, and Applications. Wiley, Hoboken (2013)

    Book  MATH  Google Scholar 

  10. Lavrač, N., Kavšek, B., Flach, P., Todorovski, L.: Subgroup discovery with CN2-SD. J. Mach. Learn. Res. 5, 153–188 (2004)

    MathSciNet  Google Scholar 

  11. Lee, J., Mark, R.: A hypotensive episode predictor for intensive care based on heart rate and blood pressure time series. In: Computing in Cardiology, pp. 81–84. IEEE (2010)

    Google Scholar 

  12. Lee, J., Mark, R.G.: An investigation of patterns in hemodynamic data indicative of impending hypotension in intensive care. Biomed. Eng. Online 9(1), 62 (2010)

    Article  Google Scholar 

  13. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 6(1), 3 (2012)

    Google Scholar 

  14. Ribeiro, R.P., Pereira, P., Gama, J.: Sequential anomalies: a study in the railway industry. Mach. Learn. 105(1), 127–153 (2016)

    Article  MathSciNet  Google Scholar 

  15. Rocha, T., Paredes, S., De Carvalho, P., Henriques, J.: Prediction of acute hypotensive episodes by means of neural network multi-models. Comput. Biol. Med. 41(10), 881–890 (2011)

    Article  Google Scholar 

  16. Saeed, M., Lieu, C., Raber, G., Mark, R.G.: MIMIC II: a massive temporal ICU patient database to support research in intelligent patient monitoring. In: Computers in Cardiology, pp. 641–644. IEEE (2002)

    Google Scholar 

  17. Stone, P., Veloso, M.: Layered learning. In: López de Mántaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 369–381. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45164-1_38

    Chapter  Google Scholar 

  18. Taieb, S.B., Bontempi, G., Atiya, A.F., Sorjamaa, A.: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Syst. Appl. 39(8), 7067–7083 (2012)

    Article  Google Scholar 

  19. Tsur, E., Last, M., Garcia, V.F., Udassin, R., Klein, M., Brotfain, E.: Hypotensive episode prediction in ICUs via observation window splitting. In: Brefeld, U., et al. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11053, pp. 472–487. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10997-4_29

    Chapter  Google Scholar 

  20. Weiss, G.M., Hirsh, H.: Learning to predict rare events in event sequences. In: KDD, pp. 359–363 (1998)

    Google Scholar 

Download references

Acknowledgements

Vitor Cerqueira is supported by a FCT PhD research grant (SFRH/BD/135705/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor Cerqueira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cerqueira, V., Torgo, L., Soares, C. (2019). Layered Learning for Early Anomaly Detection: Predicting Critical Health Episodes. In: Kralj Novak, P., Šmuc, T., Džeroski, S. (eds) Discovery Science. DS 2019. Lecture Notes in Computer Science(), vol 11828. Springer, Cham. https://doi.org/10.1007/978-3-030-33778-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33778-0_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33777-3

  • Online ISBN: 978-3-030-33778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics