Skip to main content

A Unified Approach to Biclustering Based on Formal Concept Analysis and Interval Pattern Structure

  • Conference paper
  • First Online:
Discovery Science (DS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11828))

Included in the following conference series:

Abstract

In a matrix representing a numerical dataset, a bicluster is a submatrix whose cells exhibit similar behavior. Biclustering is naturally related to Formal Concept Analysis (FCA) where concepts correspond to maximal and closed biclusters in a binary dataset. In this paper, a unified characterization of biclustering algorithms is proposed using FCA and pattern structures, an extension of FCA for dealing with numbers and other complex data. Several types of biclusters – constant-column, constant-row, additive, and multiplicative – and their relation to interval pattern structures is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C., Han, J. (eds.): Frequent Pattern Mining. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07821-2

    Book  MATH  Google Scholar 

  2. Andrews, S.: In-Close2, a high performance formal concept miner. In: Andrews, S., Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS 2011. LNCS (LNAI), vol. 6828, pp. 50–62. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22688-5_4

    Chapter  Google Scholar 

  3. Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression data: the order-preserving submatrix problem. J. Comput. Biol. 10(3–4), 373–384 (2003)

    Article  Google Scholar 

  4. Cheng, Y., Church, G.M.: Biclustering of expression data. In: ISMB, vol. 8, pp. 93–103 (2000)

    Google Scholar 

  5. Duarte, R.P., Simões, Á., Henriques, R., Neto, H.C.: FPGA-based OpenCL accelerator for discovering temporal patterns in gene expression data using biclustering. In: Proceedings of the 6th International Workshop on Parallelism in Bioinformatics, pp. 53–62. ACM (2018)

    Google Scholar 

  6. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS-ConceptStruct 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44583-8_10

    Chapter  Google Scholar 

  7. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 2nd edn. Springer, Heidelberg (1999)

    Book  Google Scholar 

  8. Henriques, R., Ferreira, F.L., Madeira, S.C.: BicPAMS: software for biological data analysis with pattern-based biclustering. BMC Bioinform. 18(1), 82 (2017)

    Article  Google Scholar 

  9. Henriques, R., Madeira, S.C.: BicPAM: pattern-based biclustering for biomedical data analysis. Algorithms Mol. Biol. 9(1), 27 (2014)

    Article  Google Scholar 

  10. Henriques, R., Madeira, S.C.: BicSPAM: flexible biclustering using sequential patterns. BMC Bioinform. 15(1), 130 (2014)

    Article  Google Scholar 

  11. Henriques, R., Madeira, S.C., Antunes, C.: F2G: efficient discovery of full-patterns. In: ECML/PKDD nfMCP, pp. 1–9 (2013)

    Google Scholar 

  12. Ignatov, D.I., Kuznetsov, S.O., Poelmans, J.: Concept-based biclustering for internet advertisement. In: 2012 IEEE 12th International Conference on Data Mining Workshops (ICDMW), pp. 123–130. IEEE (2012)

    Google Scholar 

  13. Ignatov, D.I., Poelmans, J., Zaharchuk, V.: Recommender system based on algorithm of bicluster analysis RecBi. arXiv preprint arXiv:1202.2892 (2012)

  14. Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expression data with pattern structures in formal concept analysis. Inf. Sci. 181(10), 1989–2001 (2011)

    Article  MathSciNet  Google Scholar 

  15. Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14(2–3), 189–216 (2002)

    Article  Google Scholar 

  16. Li, G., Ma, Q., Tang, H., Paterson, A.H., Xu, Y.: QUBIC: a qualitative biclustering algorithm for analyses of gene expression data. Nucleic Acids Res. 37(15), e101–e101 (2009)

    Article  Google Scholar 

  17. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 1(1), 24–45 (2004)

    Article  Google Scholar 

  18. Pio, G., Ceci, M., D’Elia, D., Loglisci, C., Malerba, D.: A novel biclustering algorithm for the discovery of meaningful biological correlations between microRNAs and their target genes. BMC Bioinform. 14(7), S8 (2013)

    Article  Google Scholar 

  19. Pontes, B., Giráldez, R., Aguilar-Ruiz, J.S.: Biclustering on expression data: a review. J. Biomed. Inform. 57, 163–180 (2015)

    Article  Google Scholar 

  20. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(suppl-1), S136–S144 (2002)

    Article  Google Scholar 

  21. Veroneze, R., Banerjee, A., Von Zuben, F.J.: Enumerating all maximal biclusters in numerical datasets. Inf. Sci. 379, 288–309 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nyoman Juniarta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Juniarta, N., Couceiro, M., Napoli, A. (2019). A Unified Approach to Biclustering Based on Formal Concept Analysis and Interval Pattern Structure. In: Kralj Novak, P., Šmuc, T., Džeroski, S. (eds) Discovery Science. DS 2019. Lecture Notes in Computer Science(), vol 11828. Springer, Cham. https://doi.org/10.1007/978-3-030-33778-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33778-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33777-3

  • Online ISBN: 978-3-030-33778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics